
Patchwork
Release 2.2.6.alpha.0

Jul 26, 2021

Usage Documentation

1 Overview 3
1.1 Projects . 4
1.2 People . 4
1.3 Users . 4
1.4 Submissions . 5
1.5 Comments . 5
1.6 Patch Metadata . 5
1.7 Collections . 6
1.8 Events . 7

2 Design 9

3 Autodelegation 11

4 Hint Headers 13

5 Clients 15
5.1 pwclient . 15
5.2 git-pw . 15
5.3 snowpatch . 16

6 Installation 17
6.1 Deployment Guides, Provisioning Tools and Platform-as-a-Service 17
6.2 Requirements . 17
6.3 Database . 18
6.4 Patchwork . 19
6.5 Reverse Proxy and WSGI HTTP Servers . 21
6.6 Django administrative console . 23
6.7 Incoming Email . 24
6.8 (Optional) Configure your VCS to Automatically Update Patches 26
6.9 (Optional) Configure the Patchwork Cron Job . 26

7 Configuration 27
7.1 The settings.py File . 27
7.2 Patchwork-specific Settings . 27

8 Management 31

i

8.1 The manage.py Script . 31
8.2 Available Commands . 31

9 Upgrading 35
9.1 Before You Start . 35
9.2 Identify Changed Scripts, Requirements, etc. 35
9.3 Understand What Requirements Have Changed . 35
9.4 Collect Static Files . 36
9.5 Upgrade Your Database . 36

10 Contributing 37
10.1 Coding Standards . 37
10.2 Testing . 38
10.3 Release Notes . 38
10.4 API . 39
10.5 Reporting Issues . 39
10.6 Submitting Changes . 39
10.7 Mailing Lists . 39

11 Installation 41
11.1 Docker-Based Installation . 41
11.2 Manual Installation . 43
11.3 Import Mailing List Archives . 46
11.4 Django Debug Toolbar . 46
11.5 Django Database Backup . 47
11.6 Environment Variables . 47

12 Release Process 49
12.1 Versioning . 49
12.2 Release Cycle . 50
12.3 Supported Versions . 50
12.4 Release Checklist . 50
12.5 Backporting . 50

13 Using the APIs 53

14 Static Assets 55
14.1 css . 55
14.2 fonts . 55
14.3 js . 56

15 The REST API 59
15.1 Getting Started . 59
15.2 Versioning . 60
15.3 Schema . 61
15.4 Parameters . 61
15.5 Authentication . 62
15.6 Pagination . 62
15.7 Supported Versions . 62
15.8 Schemas . 63

16 The XML-RPC API 181
16.1 Getting Started . 181
16.2 Further Information . 182

ii

17 Unreleased 183
17.1 v2.2.4 . 183
17.2 v2.2.3 . 183
17.3 v2.2.2 . 183
17.4 v2.2.1 . 184
17.5 v2.2.0 . 184
17.6 v2.1.0 . 186

18 v2.1 Series (“Eolienne”) 187
18.1 v2.1.6 . 187
18.2 v2.1.4 . 187
18.3 v2.1.3 . 187
18.4 v2.1.2 . 188
18.5 v2.1.1 . 188
18.6 v2.1.0 . 189

19 v2.0 Series (“Dazzle”) 191
19.1 v2.0.4 . 191
19.2 v2.0.3 . 191
19.3 v2.0.2 . 191
19.4 v2.0.1 . 192
19.5 v2.0.0 . 192

20 v1.1 Series (“Cashmere”) 195
20.1 1.1.3 . 195
20.2 1.1.2 . 195
20.3 1.1.1 . 195
20.4 1.1.0 . 196

21 v1.0 Series (“Burlap”) 197
21.1 1.0.0 . 197

22 v0.9 Series (“Alpaca”) 199

HTTP Routing Table 201

Index 203

iii

iv

Patchwork, Release 2.2.6.alpha.0

Patchwork is a patch tracking system for community-based projects. It is intended to make the patch management
process easier for both the project’s contributors and maintainers, leaving time for the more important (and more
interesting) stuff.

Patches that have been sent to a mailing list are ‘caught’ by the system, and appear on a web page. Any comments
posted that reference the patch are appended to the patch page too. The project’s maintainer can then scan through the
list of patches, marking each with a certain state, such as Accepted, Rejected or Under Review. Old patches can be
sent to the archive or deleted.

Currently, Patchwork is being used for a number of open-source projects, mostly subsystems of the Linux kernel.
Although Patchwork has been developed with the kernel workflow in mind, the aim is to be flexible enough to suit the
majority of community projects.

Usage Documentation 1

Patchwork, Release 2.2.6.alpha.0

2 Usage Documentation

CHAPTER 1

Overview

The key concepts or models of Patchwork are outlined below.

• Projects

• People

• Users

– Standard Users

– Maintainers

• Submissions

– Patches

– Cover Letters

• Comments

• Patch Metadata

– States

– Delegates

– Tags

– Checks

• Collections

– Series

– Bundles

– To-do Lists

• Events

3

Patchwork, Release 2.2.6.alpha.0

– Cover Letter Created

– Patch Created

– Patch Completed

– Patch Delegated

– Patch State Changed

– Check Created

– Series Created

– Series Completed

– What’s Not Exposed

1.1 Projects

Projects typically represent a software project or sub-project. A Patchwork server can host multiple projects. Each
project can have multiple maintainers. Projects usually have a 1:1 mapping with a mailing list, though it’s also possible
to have multiple projects in the same list using the subject as filter. Patches, cover letters, and series are all associated
with a single project.

1.2 People

People are anyone who has submitted a patch, cover letter, or comment to a Patchwork instance.

1.3 Users

Users are anyone who has created an account on a given Patchwork instance.

1.3.1 Standard Users

A standard user can associate multiple email addresses with their user account, create bundles and store TODO lists.

1.3.2 Maintainers

Maintainers are a special type of user that with permissions to do certain operations that regular Patchwork users can’t.
Patchwork maintainers usually have a 1:1 mapping with a project’s code maintainers though this is not necessary.

The operations that a maintainer can invoke include:

• Change the state of a patch

• Archive a patch

• Delegate a patch, or be delegated a patch

4 Chapter 1. Overview

Patchwork, Release 2.2.6.alpha.0

1.4 Submissions

Patchwork captures three types of mail to mailing lists: patches, cover letters, and replies to either patches or cover
letters, a.k.a. comments. Any mail that does not fit one of these categories is ignored.

1.4.1 Patches

Patches are the central object in Patchwork structure. A patch contains both a diff and some metadata, such as the
name, the description, the author, the version of the patch etc. Patchwork stores not only the patch itself but also
various metadata associated with the email that the patch was parsed from, such as the message headers or the date the
message itself was received.

1.4.2 Cover Letters

Cover letters provide a way to offer a “big picture” overview of a series of patches. When using Git, these mails can be
recognised by way of their 0/N subject prefix, e.g. [00/11] A sample series. Like patches, Patchwork stores not only
the various aspects of the cover letter itself, such as the name and body of the cover letter, but also various metadata
associated with the email that the cover letter was parsed from.

1.5 Comments

Comments are replies to a submission - either a patch or a cover letter. Unlike a Mail User Agent (MUA) like Gmail,
Patchwork does not thread comments. Instead, every comment is associated with either a patch or a cover letter, and
organized by date.

1.6 Patch Metadata

Patchwork allows users to store various metadata against patches. This metadata is only configurable by a maintainer.

1.6.1 States

States track the state of patch in its lifecycle. States vary from project to project, but generally a minimum subset of
“new”, “rejected” and “accepted” will exist.

1.6.2 Delegates

Delegates are Patchwork users who are responsible for both reviewing a patch and setting its eventual state in Patch-
work. This makes them akin to reviewers in other tools. Delegation works particularly well for larger projects where
various subsystems, each with their own maintainer(s), can be identified. Only one delegate can be assigned to a patch.

Note: Patchwork supports automatic delegation of patches. Refer to Autodelegation for more information.

1.4. Submissions 5

Patchwork, Release 2.2.6.alpha.0

1.6.3 Tags

Tags are specially formatted metadata appended to the foot the body of a patch or a comment on a patch. Patchwork
extracts these tags at parse time and associates them with the patch. You add extra tags to an email by replying to the
email. The following tags are available on a standard Patchwork install:

Acked-by: For example:

Acked-by: Stephen Finucane <stephen@that.guru>

Tested-by: For example:

Tested-by: Stephen Finucane <stephen@that.guru>

Reviewed-by: For example:

Reviewed-by: Stephen Finucane <stephen@that.guru>

The available tags, along with the significance of said tags, varies from project to project and Patchwork instance to
Patchwork instance. The kernel project documentation provides an overview of the supported tags for the Linux kernel
project.

1.6.4 Checks

Checks store the results of any tests executed (or executing) for a given patch. This is useful, for example, when using
a continuous integration (CI) system to test patches. Checks have a number of fields associated with them:

Context A label to discern check from the checks of other testing systems

Description A brief, optional description of the check

Target URL A target URL where a user can find information related to this check, such as test logs.

State The state of the check. One of: pending, success, warning, fail

User The user creating the check

Note: Checks can only be created through the Patchwork APIs. Refer to ../api for more information.

1.7 Collections

Patchwork provides a number of ways to store groups of patches. Some of these are automatically generated, while
others are user-defined.

1.7.1 Series

Series are groups of patches, along with an optional cover letter. Series are mostly dumb containers, though they also
contain some metadata themselves such as a version (which is inherited by the patches and cover letter) and a count of
the number of patches found in the series.

6 Chapter 1. Overview

https://www.kernel.org/doc/html/latest/process/submitting-patches.html

Patchwork, Release 2.2.6.alpha.0

1.7.2 Bundles

Bundles are custom, user-defined groups of patches. Bundles can be used to keep patch lists, preserving order, for
future inclusion in a tree. There’s no restriction of number of patches and they don’t even need to be in the same
project. A single patch also can be part of multiple bundles at the same time. An example of Bundle usage would be
keeping track of the Patches that are ready for merge to the tree.

1.7.3 To-do Lists

Patchwork users can store a to-do list of patches.

1.8 Events

Events are raised whenever patches are created or modified.

All events have a number of common properties, along with some event-specific properties:

category The type of event

project The project this event belongs to

date When this event was created

actor The user, if any, that caused/created this event

payload Additional information

1.8.1 Cover Letter Created

Category cover-created

Sent when a cover letter is created.

cover Created cover letter

1.8.2 Patch Created

Category patch-created

Sent when a patch is created.

patch Created patch

1.8.3 Patch Completed

Category patch-completed

Sent when a patch in a series has its dependencies met, or when a patch that is not in a series is created (since that
patch has no dependencies).

patch Completed patch

series Series from which patch dependencies were extracted, if any

1.8. Events 7

Patchwork, Release 2.2.6.alpha.0

1.8.4 Patch Delegated

Category patch-delegated

Sent when a patch’s delegate is changed.

patch Updated patch

previous Previous delegate, if any

current Current delegate, if any

1.8.5 Patch State Changed

Category patch-state-changed

Sent when a patch’s state is changed.

patch Updated patch

previous Previous state

current Current state

1.8.6 Check Created

Category check-created

Sent when a patch check is created.

check Created check

1.8.7 Series Created

Category series-created

Sent when a series is created.

series Created series

1.8.8 Series Completed

Category series-completed

Sent when a series is completed.

series Completed series

1.8.9 What’s Not Exposed

• Bundles

We don’t expose an “added to bundle” event as it’s unlikely that this will be useful to either users or CI setters.

• Comments

Like Bundles, there likely isn’t much value in exposing these via the API.

8 Chapter 1. Overview

CHAPTER 2

Design

Patchwork should supplement mailing lists, not replace them

Patchwork isn’t intended to replace a community mailing list; that’s why you can’t comment on a patch in Patchwork.
If this were the case, then there would be two forums of discussion on patches, which fragments the patch review
process. Developers who don’t use Patchwork would get left out of the discussion.

Don’t pollute the project’s changelogs with Patchwork poop

A project’s changelogs are valuable - we don’t want to add Patchwork-specific metadata.

Patchwork users shouldn’t require a specific version control system

Not everyone uses git for kernel development, and not everyone uses git for Patchwork-tracked projects.

It’s still possible to hook other programs into Patchwork, using various clients or the APIs directly.

9

Patchwork, Release 2.2.6.alpha.0

10 Chapter 2. Design

CHAPTER 3

Autodelegation

Autodelegation allows patches to be automatically delegated to a user based on the files modified by the patch. To do
this, a number of rules can be configured in the project administration page. This can usually be found at:

/admin/patchwork/project/<project_id>/change

Note: Autodelegation can only be configured by Patchwork administrators, i.e. those that can access the ‘admin’
panel. If you require configuration of autodelegation rules on a local instance, contact your Patchwork administrator.

In this section there are the following fields:

User The patchwork user that should be autodelegated to the patch

Priority The priority of the rule relative to other patches. Higher values indicate higher priority. If two rules have the
same priority, ordering will be based on the path.

Path A path in fnmatch format. The fnmatch library allows for limited, Unix shell-style wildcarding. Filenames are
extracted from patch lines beginning with --- or +++.

You can simply use a bare path:

patchwork/views/about.py

Or it is also possible to use relative paths, such as:

*/manage.py

Rules are configured by setting the above fields and saving the rules. These rules will be applied at patch parse time.

11

https://docs.python.org/2/library/fnmatch.html

Patchwork, Release 2.2.6.alpha.0

12 Chapter 3. Autodelegation

CHAPTER 4

Hint Headers

Patchwork provides a number of special email headers to control how a patch is handled when it is received. The
examples provided below use git-send-email, but custom headers can also be set when using tools like mutt.

X-Patchwork-Hint

Valid values: ignore

When set, this header will ensure the provided email is not parsed by Patchwork. For example:

$ git send-email --add-header="X-Patchwork-Hint: ignore" master

X-Patchwork-Delegate

Valid values: An email address associated with a Patchwork user

If set and valid, the user corresponding to the provided email address will be assigned as the delegate of
any patch parsed. If invalid, it will be ignored. For example:

$ git send-email --add-header="X-Patchwork-Delegate: a@example.com" master

X-Patchwork-State

Valid values: Varies between deployments. This can usually be one of “Accepted”, “Rejected”, “RFC” or
“Awaiting Upstream”, among others.

If set and valid, the state provided will be assigned as the state of any patch parsed. If invalid, it will be
ignored. For example:

$ git send-email --add-header="X-Patchwork-State: RFC" master

13

Patchwork, Release 2.2.6.alpha.0

14 Chapter 4. Hint Headers

CHAPTER 5

Clients

A number of clients are available for interacting with Patchwork’s various APIs.

5.1 pwclient

Changed in version 2.2: pwclient was previously provided with Patchwork. It has been packaged as a separate
application since Patchwork v2.2.0.

The pwclient application can be used to interact with Patchwork from the command line. Functionality provided
by pwclient includes:

• Listing patches, projects, and checks

• Downloading and applying patches to a local code base

• Modifying the status of patches

• Creating new checks

More information on pwclient, including installation and usage instructions, can be found in the documentation
and the GitHub repo.

5.2 git-pw

The git-pw application can be used to integrate Git with Patchwork. The git-pw application relies on the REST
API and can be used to interact to list, download and apply series, bundles and individual patches.

More information on git-pw, including installation and usage instructions, can be found in the documentation and
the GitHub repo.

15

https://pwclient.readthedocs.io/
https://github.com/getpatchwork/pwclient/
https://git-pw.readthedocs.io/
https://github.com/getpatchwork/git-pw/

Patchwork, Release 2.2.6.alpha.0

5.3 snowpatch

The snowpatch application is a bridge between Patchwork and the Jenkins continuous integration automation server.
It monitors the REST API for incoming patches, applies them on top of an existing git tree, triggers appropriate builds
and test suites, and reports the results back to Patchwork.

Find out more about snowpatch at its GitHub repo.

16 Chapter 5. Clients

https://github.com/ruscur/snowpatch

CHAPTER 6

Installation

This document describes the necessary steps to configure Patchwork in a production environment. This requires a
significantly “harder” deployment than the one used for development. If you are interested in developing Patchwork,
refer to the development guide instead.

This document describes a single-node installation of Patchwork, which will handle the database, server, and applica-
tion. It is possible to split this into multiple servers, which would provide additional scalability and availability, but
this is is out of scope for this document.

6.1 Deployment Guides, Provisioning Tools and Platform-as-a-
Service

Before continuing, it’s worth noting that Patchwork is a Django application. With the exception of the handling of
incoming mail (described below), it can be deployed like any other Django application. This means there are tens,
if not hundreds, of existing articles and blogs detailing how to deploy an application like this. As such, if any of the
below information is unclear then we’d suggest you go search for “Django deployment guide” or similar, deploy your
application, and submit a patch for this guide to clear up that confusion for others.

You’ll also find that the same search reveals a significant number of existing deployment tools aimed at Django. These
tools, be they written in Ansible, Puppet, Chef or something else entirely, can be used to avoid much of the manual
configuration described below. If possible, embrace these tools to make your life easier.

Finally, many Platform-as-a-Service (PaaS) providers and tools support deployment of Django applications with min-
imal effort. Should you wish to avoid much of the manual configuration, we suggest you investigate the many options
available to find one that best suits your requirements. The only issue here will likely be the handling of incoming
mail - something which many of these providers don’t support. We address this in the appropriate section below.

6.2 Requirements

For the purpose of this guide, we will assume an Ubuntu 18.04 host: commands, package names and/or package
versions will likely change if using a different distro or release. Similarly, usage of different package versions to

17

Patchwork, Release 2.2.6.alpha.0

the ones suggested may require slightly different configuration. For example, this guide describes configuration with
Python 3 and using Python 2 will require different packages and some minor changes to configuration files.

Before beginning, you should update and restart this system:

$ sudo apt-get update -y
$ sudo apt-get upgrade -y
$ sudo reboot

Once rebooted, we need to configure some environment variables. These will be used to ease deployment:

DATABASE_NAME=patchwork Name of the database. We’ll name this after the application itself.

DATABASE_USER=www-data Username that the Patchwork web application will access the database with. We
will use www-data, for reasons described later in this guide.

DATABASE_PASS= Password that the Patchwork web application will access the database with. As we’re going to
use peer authentication (more on this later), this will be unset.

DATABASE_HOST= IP or hostname of the database host. As we’re hosting the application on the same host as the
database and hoping to use peer authentication, this will be unset.

DATABASE_PORT= Port of the database host. As we’re hosting the application on the same host as the database and
using the default configuration, this will be unset.

Export each of these. For example:

$ export DATABASE_NAME=patchwork

The remainder of the requirements are listed as we install and configure the various components required.

6.3 Database

6.3.1 Install Requirements

We’re going to rely on PostgreSQL, though MySQL is also supported:

$ sudo apt-get install -y postgresql postgresql-contrib

6.3.2 Configure Database

We need to create a database for the system using the database name above. In addition, we need to add database users
for two system users, the web user (the user that the web server runs as) and the mail user (the user that the mail server
runs as). On Ubuntu these are www-data and nobody, respectively. PostgreSQL supports peer authentication,
which uses the standard UNIX authentication method as a backend. This means no database-specific passwords need
to be configured.

PostgreSQL created a system user called postgres; you will need to run commands as this user.

$ sudo -u postgres createdb $DATABASE_NAME
$ sudo -u postgres createuser $DATABASE_USER
$ sudo -u postgres createuser nobody

We will also need to apply permissions to the tables in this database but seeing as the tables haven’t actually been
created yet this will have to be done later.

18 Chapter 6. Installation

https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-PEER

Patchwork, Release 2.2.6.alpha.0

6.4 Patchwork

6.4.1 Install Requirements

The first requirement is Patchwork itself. It can be downloaded like so:

$ wget https://github.com/getpatchwork/patchwork/archive/v2.2.0.tar.gz

We will install this under /opt, though this is only a suggestion:

$ tar -xvzf v2.2.0.tar.gz
$ sudo mv v2.2.0 /opt/patchwork

Important: Per the Django documentation, source code should not be placed in your web server’s document root as
this risks the possibility that people may be able to view your code over the Web. This is a security risk.

Next we require Python. If not already installed, then you should do so now. Patchwork supports both Python 2.7 and
Python 3.3+, though we’re going to use the latter to ease future upgrades. Python 3 is installed by default, but you
should validate this now:

$ sudo apt-get install -y python3

We also need to install the various requirements. Let’s use system packages for this also:

$ sudo apt-get install -y python3-django python3-psycopg2 \
python3-djangorestframework python3-django-filters

Tip: The pkgs.org website provides a great reference for identifying the name of these dependencies.

You can also install requirements using pip. If using this method, you can install requirements like so:

$ sudo pip install -r /opt/patchwork/requirements-prod.txt

6.4.2 Configure Patchwork

You will also need to configure a settings file for Django. A sample settings file is provided that defines default settings
for Patchwork. You’ll need to configure settings for your own setup and save this as production.py.

$ cd /opt/patchwork
$ cp patchwork/settings/production{.example,}.py

Alternatively, you can override the DJANGO_SETTINGS_MODULE environment variable and provide a completely
custom settings file.

The provided production.example.py settings file is configured to read configuration from environment vari-
ables. This suits container-based deployments quite well but for the all-in-one deployment we’re configuring here,
hardcoded settings makes more sense. If you wish to use environment variables, you should export each setting using
the appropriate name, such as DJANGO_SECRET_KEY, DATABASE_NAME or EMAIL_HOST, instead of modifying
the production.py file as we’ve done below.

6.4. Patchwork 19

https://docs.djangoproject.com/en/1.11/intro/tutorial01/#creating-a-project
https://pkgs.org/
https://docs.djangoproject.com/en/1.11/ref/settings/

Patchwork, Release 2.2.6.alpha.0

Databases

We already defined most of the configuration necessary for this in the intro. As a reminder, these were:

• DATABASE_NAME

• DATABASE_USER

• DATABASE_PASSWORD

• DATABASE_HOST

• DATABASE_PORT

Configure the DATABASE setting in production.py accordingly.

Static Files

While we have not yet configured our proxy server, we need to configure the location that these files will be stored in.
We will install these under /var/www/patchwork, though this is only a suggestion and can be changed.

$ sudo mkdir -p /var/www/patchwork

You can configure this by configuring the STATIC_ROOT setting in production.py.

STATIC_ROOT = '/var/www/patchwork'

Secret Key

The SECRET_KEY setting is necessary for Django to generate signed data. This should be a random value and kept
secret. You can generate and a value for SECRET_KEY with the following Python code:

import string
try:

import secrets
except ImportError: # Python < 3.6

import random
secrets = random.SystemRandom()

chars = string.ascii_letters + string.digits + string.punctuation
print("".join([secrets.choice(chars) for i in range(50)]))

Once again, store this in production.py.

Other Options

There are many other settings that may be configured, many of which are described in Configuration.

• SECRET_KEY

• ADMINS

• TIME_ZONE

• LANGUAGE_CODE

• DEFAULT_FROM_EMAIL

• NOTIFICATION_FROM_EMAIL

20 Chapter 6. Installation

Patchwork, Release 2.2.6.alpha.0

These are not configurable using environment variables and must be configured directly in the production.py
settings file instead. For example, if you wish to enable the XML-RPC API, you should add the following:

ENABLE_XMLRPC = True

Similarly, should you wish to disable the REST API, you should add the following:

ENABLE_REST_API = False

For more information, refer to Configuration.

6.4.3 Final Steps

Once done, we should be able to check that all requirements are met using the check command of the manage.py
executable. This must be run as the www-data user:

$ sudo -u www-data python3 manage.py check

We should also take this opportunity to both configure the database and static files:

$ sudo -u www-data python3 manage.py migrate
$ sudo python3 manage.py collectstatic
$ sudo -u www-data python3 manage.py loaddata default_tags default_states

Note: The above default_tags and default_states fixtures above are just that: defaults. You can modify
these to fit your own requirements.

Finally, it may be helpful to start the development server quickly to ensure you can see something. For this to function,
you will need to add the ALLOWED_HOSTS and DEBUG settings to the production.py settings file:

ALLOWED_HOSTS = ['*']
DEBUG = True

Now, run the server.

$ sudo -u www-data python3 manage.py runserver 0.0.0.0:8000

Browse this instance at http://[your_server_ip]:8000. If everything is working, kill the development
server using Control-c and remove ALLOWED_HOSTS and DEBUG.

6.5 Reverse Proxy and WSGI HTTP Servers

6.5.1 Install Packages

We will use nginx and uWSGI to deploy Patchwork, acting as reverse proxy server and WSGI HTTP server respec-
tively. Other options are available, such as Apache with the mod_wsgi module, or nginx with the Gunicorn WSGI
HTTP server. While we don’t document these, sample configuration files for the former case are provided in lib/
apache2/.

Let’s start by installing nginx and uWSGI:

6.5. Reverse Proxy and WSGI HTTP Servers 21

Patchwork, Release 2.2.6.alpha.0

$ sudo apt-get install -y nginx-full uwsgi uwsgi-plugin-python3

6.5.2 Configure nginx and uWSGI

Configuration files for nginx and uWSGI are provided in the lib subdirectory of the Patchwork source code. These
can be modified as necessary, but for now we will simply copy them.

First, let’s load the provided configuration for nginx and disable the default configuration:

$ sudo cp /opt/patchwork/lib/nginx/patchwork.conf \
/etc/nginx/sites-available/

$ sudo unlink /etc/nginx/sites-enabled/default

If you wish to modify this configuration, now is the time to do so. Once done, validate and enable your configuration:

$ sudo ln -s /etc/nginx/sites-available/patchwork.conf \
/etc/nginx/sites-enabled/patchwork.conf

$ sudo nginx -t

Now, use the provided configuration for uWSGI:

$ sudo mkdir -p /etc/uwsgi/sites
$ sudo cp /opt/patchwork/lib/uwsgi/patchwork.ini \

/etc/uwsgi/sites/patchwork.ini

Note: We created the /etc/uwsgi directory above because we’re going to run uWSGI in emperor mode. This has
benefits for multi-app deployments.

6.5.3 Configure Patchwork

For security reasons, Django requires you to configure the ALLOWED_HOSTS setting, which is a “list of strings repre-
senting the host/domain names that this Django site can serve”. To do this, configure the setting in the production.
py setting file using the hostname(s) and/or IP address(es) from which you will be serving this domain. For example:

ALLOWED_HOSTS = ('.example.com',)

6.5.4 Create systemd Unit File

As things stand, uWSGI will need to be started manually every time the system boots, in addition to any time it may
fail. We can automate this process using systemd. To this end a systemd unit file should be created to start uWSGI at
boot:

$ sudo tee /etc/systemd/system/uwsgi.service > /dev/null << EOF
[Unit]
Description=uWSGI Emperor service

[Service]
ExecStartPre=/bin/bash -c 'mkdir -p /run/uwsgi; chown www-data:www-data /run/uwsgi'
ExecStart=/usr/bin/uwsgi --emperor /etc/uwsgi/sites
Restart=always

(continues on next page)

22 Chapter 6. Installation

https://uwsgi-docs.readthedocs.io/en/latest/Emperor.html
https://docs.djangoproject.com/en/1.11/ref/settings/#allowed-hosts
https://uwsgi-docs.readthedocs.io/en/latest/Systemd.html

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

KillSignal=SIGQUIT
Type=notify
NotifyAccess=all

[Install]
WantedBy=multi-user.target
EOF

You should also delete the default service file found in /etc/init.d to ensure the unit file defined above is used.

sudo rm /etc/init.d/uwsgi
sudo systemctl daemon-reload

6.5.5 Final Steps

Start the uWSGI service we created above:

$ sudo systemctl restart uwsgi
$ sudo systemctl status uwsgi
$ sudo systemctl enable uwsgi

Next up, restart the nginx service:

$ sudo systemctl restart nginx
$ sudo systemctl status nginx
$ sudo systemctl enable nginx

Finally, browse to the instance using your browser of choice. You may wish to take this opportunity to setup your
projects and configure your website address (in the Sites section of the admin console, found at /admin).

If there are issues with the instance, you can check the logs for nginx and uWSGI. There are a couple of commands
listed below which can help:

• sudo systemctl status uwsgi, sudo systemctl status nginx

To ensure the services have correctly started

• sudo cat /var/log/nginx/error.log

To check for issues with nginx

• sudo cat /var/log/patchwork.log

To check for issues with uWSGI. This is the default log location set by the daemonize setting in the uWSGI
configuration file.

6.6 Django administrative console

In order to access the administrative console at /admin, you need at least one user account to be registered and
configured as a super user or staff account to access the Django administrative console. This can be achieved by doing
the following:

$ python3 manage.py createsuperuser

6.6. Django administrative console 23

Patchwork, Release 2.2.6.alpha.0

Once the administrative console is accessible, you would want to configure your different sites and their corresponding
domain names, which is required for the different emails sent by Patchwork (registration, password recovery) as well
as the sample pwclientrc files provided by your project’s page.

6.7 Incoming Email

Patchwork is designed to parse incoming mails which means you need an address to receive email at. This is a problem
that has been solved for many web apps, thus there are many ways to go about this. Some of these ways are discussed
below.

6.7.1 IMAP/POP3

The easiest option for getting mail into Patchwork is to use an existing email address in combination with a mail
retriever like getmail, which will download mails from your inbox and pass them to Patchwork for processing. getmail
is easy to set up and configure: to begin, you need to install it:

$ sudo apt-get install -y getmail

Once installed, you should configure it, substituting your own configuration details where required below:

$ sudo tee /etc/getmail/use@example.com/getmailrc > /dev/null << EOF
[retriever]
type = SimpleIMAPSSLRetriever
server = imap.example.com
port = 993
username = XXX
password = XXX
mailboxes = ALL

[destination]
we configure Patchwork as a "mail delivery agent", in that it will
handle our mails
type = MDA_external
path = /opt/patchwork/patchwork/bin/parsemail.sh

[options]
retrieve only new emails
read_all = false
do not add a Delivered-To: header field
delivered_to = false
do not add a Received: header field
received = false
EOF

Validate that this works as expected by starting getmail:

$ getmail --getmaildir=/etc/getmail/user@example.com --idle INBOX

If everything works as expected, you can create a systemd script to ensure this starts on boot:

$ sudo tee /etc/systemd/system/getmail.service > /dev/null << EOF
[Unit]
Description=Getmail for user@example.com

(continues on next page)

24 Chapter 6. Installation

http://pyropus.ca/software/getmail/

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

[Service]
User=nobody
ExecStart=/usr/bin/getmail --getmaildir=/etc/getmail/user@example.com --idle INBOX
Restart=always

[Install]
WantedBy=multi-user.target
EOF

And start the service:

$ sudo systemctl start getmail
$ sudo systemctl status getmail
$ sudo systemctl enable getmail

6.7.2 Mail Transfer Agent (MTA)

The most flexible option is to configure our own mail transfer agent (MTA) or “email server”. There are many options,
of which Postfix is one. While we don’t cover setting up Postfix here (it’s complicated and there are many guides
already available), Patchwork does include a script to take received mails and create the relevant entries in Patchwork
for you. To use this, you should configure your system to forward all emails to a given localpart (the bit before the @)
to this script. Using the patchwork localpart (e.g. patchwork@example.com) you can do this like so:

$ sudo tee -a /etc/aliases > /dev/null << EOF
patchwork: "|/opt/patchwork/patchwork/bin/parsemail.sh"
EOF

You should ensure the appropriate user is created in PostgreSQL and that it has (minimal) access to the database.
Patchwork provides scripts for the latter and they can be loaded as seen below:

$ sudo -u postgres psql -f \
/opt/patchwork/lib/sql/grant-all.postgres.sql patchwork

Note: This assumes that you are using the aliases(5) file that is owned by root, and that Postfix’s default_privs
configuration is set as nobody. If this is not the case, you should change both the username in the createuser
command above and substitute the username in the grant-all.postgres.sql script with the appropriate alter-
native.

6.7.3 Use a Email-as-a-Service Provider

Setting up an email server can be a difficult task and, in the case of deployment on PaaS provider, may not even be
an option. In this case, there are a variety of web services available that offer “Email-as-as-Service”. These services
typically convert received emails into HTTP POST requests to your endpoint of choice, allowing you to sidestep
configuration issues. We don’t cover this here, but a simple wrapper script coupled with one of these services can be
more than to get email into Patchwork.

You can also create such as service yourself using a PaaS provider that supports incoming mail and writing a little web
app.

6.7. Incoming Email 25

http://www.postfix.org/

Patchwork, Release 2.2.6.alpha.0

6.8 (Optional) Configure your VCS to Automatically Update Patches

The tools directory of the Patchwork distribution contains a file named post-receive.hook which is a sample
Git hook that can be used to automatically update patches to the Accepted state when corresponding commits are
pushed via Git.

To install this hook, simply copy it to the .git/hooks directory on your server, name it post-receive, and
make it executable.

This sample hook has support to update patches to different states depending on which branch is being pushed to. See
the STATE_MAP setting in that file.

If you are using a system other than Git, you can likely write a similar hook using the APIs or API clients to to update
patch state. If you do write one, please contribute it.

6.9 (Optional) Configure the Patchwork Cron Job

Patchwork can send notifications of patch changes. Patchwork uses a cron management command - manage.py
cron - to send these notifications and to clean up expired registrations. To enable this functionality, add the following
to your crontab:

m h dom mon dow command

*/10 * * * * cd patchwork; python3 ./manage.py cron

Note: The frequency should be the same as the NOTIFICATION_DELAY_MINUTES setting, which defaults to 10
minutes. Refer to the configuration guide for more information.

26 Chapter 6. Installation

CHAPTER 7

Configuration

This document describes the various configuration options available in Patchwork. These options can be used for both
development and deployment installations.

7.1 The settings.py File

Patchwork is a Django application and, as such, relies on Python-based settings files. Refer to the Django documenta-
tion for more information on the general format.

Patchwork provides three settings files:

base.py A base settings file that should not be used directly.

dev.py A settings file for development use. This file is horribly insecure and must not be used in production.

production.example.py A sample settings file for production use. This will likely require some heavy cus-
tomization. The deployment guide provides more information.

7.2 Patchwork-specific Settings

Patchwork utilizes a number of Patchwork-only settings in addition to the Django and Django REST Framework
settings.

7.2.1 ADMINS_HIDE

If True, the details in ADMINS will be hidden from the About page (/about).

New in version 2.2.

27

https://docs.djangoproject.com/en/2.2/topics/settings/
https://docs.djangoproject.com/en/2.2/topics/settings/
https://docs.djangoproject.com/en/2.2/ref/settings/
http://www.django-rest-framework.org/api-guide/settings/
https://docs.djangoproject.com/en/2.2/ref/settings/#admins

Patchwork, Release 2.2.6.alpha.0

7.2.2 COMPAT_REDIR

Enable redirections of URLs from previous versions of Patchwork.

7.2.3 CONFIRMATION_VALIDITY_DAYS

The number of days to consider an account confirmation request valid. After this interval, the cron management
command will delete the request.

7.2.4 DEFAULT_ITEMS_PER_PAGE

The default number of items to display in the list pages for a project (/project/{projectID}/list) or bundle
(/bundle/{userID}/{bundleName}).

This is customizable on a per-user basis from the user configuration page.

Changed in version 2.0: This option was previously named DEFAULT_PATCHES_PER_PAGE. It was renamed as
cover letters are now supported also.

7.2.5 ENABLE_REST_API

Enable the REST API.

New in version 2.0.

7.2.6 ENABLE_XMLRPC

Enable the XML-RPC API.

7.2.7 FORCE_HTTPS_LINKS

Force use of https:// links instead of guessing the scheme based on current access. This is useful if SSL protocol
is terminated upstream of the server (e.g. at the load balancer)

7.2.8 MAX_REST_RESULTS_PER_PAGE

The maximum number of items that can be requested in a REST API request using the per_page parameter.

New in version 2.2.

7.2.9 NOTIFICATION_DELAY_MINUTES

The number of minutes to wait before sending any notifications to a user. An notification generated during this time
are gathered into a single digest email, ensuring users are not spammed with emails from Patchwork.

7.2.10 NOTIFICATION_FROM_EMAIL

The email address that notification emails should be sent from.

28 Chapter 7. Configuration

Patchwork, Release 2.2.6.alpha.0

7.2.11 REST_RESULTS_PER_PAGE

The number of items to include in REST API responses by default. This can be overridden by the per_page
parameter for some endpoints.

New in version 2.0.

7.2. Patchwork-specific Settings 29

Patchwork, Release 2.2.6.alpha.0

30 Chapter 7. Configuration

CHAPTER 8

Management

This document describes the myriad administrative commands available with Patchwork. Many of these commands
are referenced in the development and deployment installation guides.

8.1 The manage.py Script

Django provides the django-admin command-line utility for interacting with Django applications and projects, as
described in the Django documentation. Patchwork, being a Django application, provides a wrapper for this command
- manage.py - that exposes not only the management commands of Django and its default applications, but also a
number of custom, Patchwork-only management commands.

An overview of the Patchwork-specific commands is provided below. For information on the commands provided by
Django itself, refer to the Django documentation. Information on any command can also be found by passing the
--help parameter:

./manage.py cron --help

8.2 Available Commands

8.2.1 cron

./manage.py cron

Run periodic Patchwork functions: send notifications and expire unused users.

This is required to ensure notifications emails are actually sent to users that request them and is helpful to expire unused
users created by spambots. For more information on integration of this script, refer to the deployment installation
guide.

31

https://docs.djangoproject.com/en/1.8/ref/django-admin/
https://docs.djangoproject.com/en/1.8/ref/django-admin/

Patchwork, Release 2.2.6.alpha.0

8.2.2 dumparchive

Export Patchwork projects as tarball of mbox files.

./manage.py dumparchive [-c | --compress] [PROJECT [PROJECT...]]

This is mostly useful for exporting the patch dataset of a Patchwork project for use with other programs.

-c, --compress
compress generated archive.

PROJECT
list ID of project(s) to export. Export all projects if none specified.

8.2.3 parsearchive

Parse an mbox archive file and store any patches/comments found.

./manage.py parsearchive [--list-id <list-id>] <infile>

This is mostly useful for development or for adding message that were missed due to, for example, an outage.

--list-id <list-id>
mailing list ID. If not supplied, this will be extracted from the mail headers.

infile
input mbox filename

8.2.4 parsemail

Parse an mbox file and store any patch/comment found.

./manage.py parsemail [--list-id <list-id>] <infile>

This is the main script used to get mails (and therefore patches) into Patchwork. It is generally used by the
parsemail.sh script in combination with a mail transfer agent (MTA) like Postfix. For more information, refer to
the deployment installation guide.

--list-id <list-id>
mailing list ID. If not supplied, this will be extracted from the mail headers.

infile
input mbox filename. If not supplied, a patch will be read from stdin.

8.2.5 rehash

Update the hashes on existing patches.

./manage.py rehash [<patch_id>, ...]

Patchwork stores hashes for each patch it receives. These hashes can be used to uniquely identify a patch for things
like automatically changing the state of the patch in Patchwork when it merges. If you change your hashing algorithm,
you may wish to rehash the patches.

patch_id
a patch ID number. If not supplied, all patches will be updated.

32 Chapter 8. Management

Patchwork, Release 2.2.6.alpha.0

8.2.6 retag

Update the tag (Ack/Review/Test) counts on existing patches.

./manage.py retag [<patch_id>...]

Patchwork extracts tags from each patch it receives. By default, three tags are extracted, but it’s possible to change
this on a per-instance basis. Should you add additional tags, you may wish to scan older patches for these new tags.

patch_id
a patch ID number. If not supplied, all patches will be updated.

8.2. Available Commands 33

Patchwork, Release 2.2.6.alpha.0

34 Chapter 8. Management

CHAPTER 9

Upgrading

This document provides some general tips and tricks that one can use when upgrading an existing, production installa-
tion of Patchwork. If you are interested in the specific changes between each release, refer to /releases/index instead.
If this is your first time installing Patchwork, refer to the Installation instead.

9.1 Before You Start

Before doing anything, always backup your data. This generally means backing up your database, but it might also
be a good idea to backup your environment in case you encounter issues during the upgrade process.

While Patchwork won’t explicitly prevent it, it’s generally wise to avoid upgrades spanning multiple releases in one
go. An iterative upgrade approach will provide an easier, if slower, upgrade process.

9.2 Identify Changed Scripts, Requirements, etc.

/releases/index provides a comprehensive listing of all backwards-incompatible changes that occur between releases
of Patchwork. Examples of such changes include:

• Moved/removed scripts and files

• Changes to the requirements, e.g. supported Django versions

• Changes to API that may affect, for example, third-party tools

It is important that you understand these changes and ensure any scripts you may have, such as systemd scripts, are
modified accordingly.

9.3 Understand What Requirements Have Changed

New versions of Patchwork can often require additional or updated version of dependencies, e.g. newer versions of
Django. It is important that you understand these requirements and can fulfil them. This is particularly true for users

35

Patchwork, Release 2.2.6.alpha.0

relying on distro-provided packages, who may have to deal with older versions of a package or may be missing a
package altogether (though we try to avoid this). Such changes are usually listed in the /releases/index, but you can
also diff the requirements.txt files in each release for comparison.

9.4 Collect Static Files

New versions of Patchwork generally contain changes to the additional files like images, CSS and JavaScript. To do
this, run the collectstatic management commands:

$./manage.py collectstatic

9.5 Upgrade Your Database

New versions of Patchwork may provide a number of schema and/or data migrations which must be applied before
starting the instance. To do this, run the migrate management command:

$./manage.py migrate

For more information on migrations, refer to the Django documentation.

36 Chapter 9. Upgrading

https://docs.djangoproject.com/en/1.11/topics/migrations/

CHAPTER 10

Contributing

10.1 Coding Standards

Follow PEP8. All code is currently PEP 8 compliant and it should stay this way.

All code must be licensed using GPL v2.0 or later and must have a SPDX License Identifier stating this. A copyright
line should be included on new files and may be added for significant changes to existing files.

Patchwork - automated patch tracking system
Copyright (C) 2000 Jane Doe <jane.doe@example.com>
Copyright (C) 2001 Joe Bloggs <joebloggs@example.com>
#
SPDX-License-Identifier: GPL-2.0-or-later

Changes that fix semantic issues will be happily received, but please keep such changes separate from functional
changes.

Patchwork uses the pre-commit framework to allow automated style checks when committing code. This is opt-in but
avoids the need to manually run style checks on commits. Pre-commit can be installed and enabled like so:

$ pip install --user pre-commit
$ pre-commit install --allow-missing-config

Once installed, the various checks listed in .pre-commit-config.yaml will be run on changed files when
committing. It is also possible to run the checks on all files manually:

$ pre-commit run --all-files

In addition to pre-commit, we provide tox targets for style checks. These are used by CI and can be useful if checking
all files manually. Refer to the Testing section below for more information on usage of this tool.

37

https://pep8.org/
https://spdx.org/licenses/GPL-2.0-or-later.html
https://spdx.org/using-spdx-license-identifier
https://pre-commit.com/

Patchwork, Release 2.2.6.alpha.0

10.2 Testing

Patchwork includes a tox script to automate testing. This requires a functional database and some Python requirements
like tox. Refer to Installation for information on how to configure these.

You may also need to install tox. If so, do this now:

$ pip install --user tox

Tip: If you’re using Docker, you may not need to install tox locally. Instead, it will already be installed inside the
container. For Docker, you can run tox like so:

$ docker-compose run --rm web tox [ARGS...]

For more information, refer to Docker-Based Installation.

Assuming these requirements are met, actually testing Patchwork is quite easy to do. To start, you can show the default
targets like so:

$ tox -l

You’ll see that this includes a number of targets to run unit tests against the different versions of Django supported,
along with some other targets related to code coverage and code quality. To run one of these, use the -e parameter:

$ tox -e py27-django18

In the case of the unit tests targets, you can also run specific tests by passing the fully qualified test name as an
additional argument to this command:

$ tox -e py27-django18 patchwork.tests.SubjectCleanUpTest

Because Patchwork support multiple versions of Django, it’s very important that you test against all supported versions.
When run without argument, tox will do this:

$ tox

10.3 Release Notes

Patchwork uses reno for release note management. To use reno, you must first install it:

$ pip install --user reno

Once installed, a new release note can be created using the reno new command:

$ reno new <slugified-summary-of-change>

Modify the created file, removing any irrelevant sections, and include the modified file in your change.

38 Chapter 10. Contributing

https://tox.readthedocs.io/en/latest/
https://docs.openstack.org/developer/reno/

Patchwork, Release 2.2.6.alpha.0

10.4 API

As discussed in Release Process, the API is versioned differently from Patchwork itself. Should you make changes
to the API, you need to ensure these only affect newer versions of the API. Refer to previous changes in the
patchwork/api directory and to the Django REST Framework documentation for more information.

Important: All API changes should be called out in release notes using the api section.

10.5 Reporting Issues

You can report issues to the mailing list or the GitHub issue tracker.

10.6 Submitting Changes

All patches should be sent to the mailing list. You must be subscribed to the list in order to submit patches. Please
abide by the QEMU guidelines on contributing or submitting patches. This covers both the initial submission and any
follow up to the patches. In particular, ensure:

• All tests pass

• Documentation has been updated with new requirements, new script names etc.

• A release note is included

Patches should ideally be submitted using the git send-email tool.

10.7 Mailing Lists

Patchwork uses a single mailing list for development, questions and announcements.

patchwork@lists.ozlabs.org

Further information about the Patchwork mailing list is available can be found on lists.ozlabs.org.

10.4. API 39

http://www.django-rest-framework.org/api-guide/versioning/
https://github.com/getpatchwork/patchwork
http://wiki.qemu.org/Contribute/SubmitAPatch
mailto:patchwork@lists.ozlabs.org
https://lists.ozlabs.org/listinfo/patchwork

Patchwork, Release 2.2.6.alpha.0

40 Chapter 10. Contributing

CHAPTER 11

Installation

This document describes the necessary steps to configure Patchwork in a development environment. If you are inter-
ested in deploying Patchwork in a production environment, refer to the deployment guide instead.

To begin, you should clone Patchwork:

$ git clone git://github.com/getpatchwork/patchwork.git

11.1 Docker-Based Installation

Patchwork provides a Docker-based environment for quick configuration of a development environment. This is the
preferred installation method. To configure Patchwork using Docker:

1. Install docker and docker-compose.

2. Create a .env file in the root directory of the project and store your UID and GID attribute there.

$ echo "UID=$UID" > .env
$ echo "GID=`id -g`" >> .env

3. Build the images. This will download over 200MB from the internet:

$ docker-compose build

To use Postgres instead of MySQL, give the -f docker-compose-pg.yml argument to
docker-compose. This is required on non-x86 architectures as the MySQL Docker images do not
have multiarch support.

4. Run docker-compose up:

$ docker-compose up

This will be visible at http://localhost:8000/.

To run a shell within this environment, run:

41

https://docs.docker.com/compose/install/
https://docs.docker.com/engine/installation/linux/
http://localhost:8000/

Patchwork, Release 2.2.6.alpha.0

$ docker-compose run --rm web --shell

To run django-manage commands, such as createsuperuser or migrate, run:

$ docker-compose run --rm web python manage.py createsuperuser

To access the SQL command-line client, run:

$ docker-compose run --rm web python manage.py dbshell

To backup the database, run:

$ docker-compose run --rm web python manage.py dbbackup

Likewise, to restore an older version of the database, run:

$ docker-compose run --rm -web python manage.py dbrestore

To run unit tests against the system Python packages, run:

$ docker-compose run --rm web python manage.py test

To run unit tests for multiple versions using tox, run:

$ docker-compose run --rm web tox

To reset the database before any of these commands, add --reset to the command line after web and before any
other arguments:

$ docker-compose run --rm web --reset tox

Any local edits to the project files made locally are immediately visible to the Docker container, and so should be
picked up by the Django auto-reloader.

For more information on Docker itself, please refer to the docker and docker-compose documentation.

Note: If using SELinux, you will need to create a custom SELinux rule to allow the Docker process to access your
working directory. Run:

$ chcon -RT svirt_sandbox_file_t $PATCHWORK_DIR

where $PATCHWORK_DIR is the absolute patch to the patchwork folder created when you cloned the repo. For
more information, see man docker run.

Note: If you see an error like the below:

ERROR: Couldn't connect to the Docker daemon at http+docker://localunixsocket - is it
→˓running?

ensure you have correctly installed Docker, added your user to the docker group, and started the daemon, per the
docker documentation.

Note: If you see an error like the below:

42 Chapter 11. Installation

https://docs.docker.com/compose/install/
https://docs.docker.com/engine/installation/linux/

Patchwork, Release 2.2.6.alpha.0

You must define UID in .env

Ensure you have created a .env file in the root of your project directory and stored the UID attribute there. For more
information on why this is necessary, refer to this docker-compose issue.

11.2 Manual Installation

Manual installation can be used where use of Docker is not possible or desired.

11.2.1 Install Required Packages

There are a number of different requirements for developing Patchwork:

• Python and libraries

• A supported database (RDBMS)

These are detailed below.

Python Requirements

To develop Python-based software you first need Python. Patchwork supports both Python 2.7 and Python 3.5+. One of
these will be installed by default on many installations, though they can also be installed manually using the python
or python3 packages.

It’s a good idea to use virtual environments to develop Python software. Virtual environments are “instances” of your
system Python without any of the additional Python packages installed. They are useful to develop and possibly deploy
Patchwork against a “well known” set of dependencies, but they can also be used to test Patchwork against several
versions of Django.

If you do not have virtualenv installed then you should install it now. This can be installed using the
python-virtualenv or python3-virtualenv packages. Alternatively you can install these using pip.

It is also helpful to install tox which is used for running tests in Patchwork. This can be installed using the
python-tox or python3-tox packages, or via pip.

Database Requirements

If not already installed, you may need to install an RDBMS. You can use either MariaDB/MySQL or PostgreSQL for
this purpose. You should also install the development headers, known as libmysqlclient-dev or libpq-dev
respectively on Debian-based Debian-based distros like Ubuntu and mysql-devel or postgresql-devel on
RHEL-based distros.

Note: While Django provides support for multiple database backends, Patchwork itself is only tested against
MySQL/MariaDB and PostgreSQL. Should you wish to use a different backend, ensure you validate this first (and
perhaps upstream any changes you may find necessary).

Note: You may be tempted to use SQLite to develop Patchwork. We’d advise against doing this. SQLite supports
a subset of the functionality of “full” RDBMS like MySQL: for example, case-sensitive matching of Unicode is not

11.2. Manual Installation 43

https://github.com/docker/compose/issues/2380
https://virtualenv.readthedocs.io/en/latest/
https://docs.djangoproject.com/en/1.11/ref/databases/
https://www.sqlite.org/faq.html#q18
https://www.sqlite.org/faq.html#q18

Patchwork, Release 2.2.6.alpha.0

supported. You will find some tests provided by Patchwork fail and some patches you develop may fail in production
due to these differences.

Example Installation

An example for installing all these packages and the MySQL RDBMS on Ubuntu 15.04 is given below:

$ sudo apt-get install python python-pip python-dev python-virtualenv \
python-tox mysql-server libmysqlclient-dev

If you have an existing MariaDB/MySQL installation and have installed pip already/are using Python 3.5+ then you
can install all packages using pip:

$ sudo pip install virtualenv tox

If you wish to use Python 3 then simply replace python with python3 in the above command.

11.2.2 Configure Virtual Environment

Note: If you are interested in simply testing Patchwork, many of the below steps are not required. tox will automati-
cally install dependencies and use virtual environments when testing.

Once these requirements are installed, you should create and activate a new virtual environment. This can be done like
so:

$ virtualenv .venv
$ source .venv/bin/activate
(.venv)$

Note: If you installed a Python 3.x-based virtual environment package, adjust the executable indicated above as
necessary, e.g. virtualenv-3.7.

Now install the packages. Patchwork provides three requirements files.

requirements-dev.txt Packages required to configure a development environment

requirements-prod.txt Packages required for deploying Patchwork in production

requirements-test.txt Packages required to run tests

We’re going to install the first of these, which can be done like so:

(.venv)$ cd patchwork
(.venv)$ pip install -r requirements-dev.txt

Note: Once configured this does not need to be done again unless the requirements change, e.g. Patchwork requires
an updated version of Django.

44 Chapter 11. Installation

https://www.sqlite.org/faq.html#q18
https://www.sqlite.org/faq.html#q18

Patchwork, Release 2.2.6.alpha.0

11.2.3 Initialize the Database

One installed, the database must be configured. We will assume you have root access to the database for these steps.

To begin, export your database credentials as follows:

(.venv)$ db_user=root
(.venv)$ db_pass=password

Now, create the database. If this is your first time configuring the database, you must create a patchwork user (or
similar) along with the database instance itself. The commands below will do this, dropping existing databases if
necessary:

(.venv)$ mysql -u$db_user -p$db_pass << EOF
DROP DATABASE IF EXISTS patchwork;
CREATE DATABASE patchwork CHARACTER SET utf8;
GRANT ALL PRIVILEGES ON patchwork.* TO 'patchwork'@'localhost'

IDENTIFIED BY 'password';
EOF

Note: The patchwork username and password password are the defaults expected by the provided dev settings
files. If using something different, export the PW_TEST_DB_USER and PW_TEST_DB_PASS variables described
in the Environment Variables section below. Alternatively, you can create your own settings file with these variables
hardcoded and change the value of DJANGO_SETTINGS_MODULE as described below.

11.2.4 Load Initial Data

Before continuing, we need to tell Django where it can find our configuration. Patchwork provides a default devel-
opment settings.py file for this purpose. To use this, export the DJANGO_SETTINGS_MODULE environment
variable as described below:

(.venv)$ export DJANGO_SETTINGS_MODULE=patchwork.settings.dev

Alternatively you can provide your own settings.py file and provide the path to that instead.

Once done, we need to create the tables in the database. This can be done using the migrate command of the
manage.py executable:

(.venv)$./manage.py migrate

Next, you should load the initial fixtures into Patchwork. These initial fixtures provide.

default_tags.xml The tags that Patchwork will extract from mails. For example: Acked-By, Reviewed-By

default_states.xml The states that a patch can be in. For example: Accepted, Rejected

default_projects.xml A default project that you can then upload patches for

These can be loaded using the loaddata command:

(.venv)$./manage.py loaddata default_tags default_states default_projects

You should also take the opportunity to create a “superuser”. You can do this using the aptly-named
createsuperuser command:

11.2. Manual Installation 45

Patchwork, Release 2.2.6.alpha.0

(.venv)$./manage.py createsuperuser

11.3 Import Mailing List Archives

Regardless of your installation method of choice, you will probably want to load some real emails into the system.
This can be done manually, however it’s generally much easier to download an archive from a Mailman instance and
load these using the parsearchive command. You can do this like so:

(.venv)$ mm_user=<myusername>
(.venv)$ mm_pass=<mypassword>
(.venv)$ mm_host=https://lists.ozlabs.org
(.venv)$ mm_url=$mm_host/private/patchwork.mbox/patchwork.mbox
(.venv)$ curl -F username=$mm_user -F password=$mm_pass -k -O $mm_url

where mm_user and mm_pass are the username and password you have registered with on the Mailman instance
found at mm_host.

Note: We provide instructions for downloading archives from the Patchwork mailing list, but almost any instance of
Mailman will allow downloading of archives as seen above; simply change the pw_url variable defined. You can
find more informations about this here.

Load these archives into Patchwork. Depending on the size of the downloaded archives this may take some time:

(.venv)$./manage.py parsearchive patchwork.mbox

Finally, run the server and browse to the IP address of your board using your browser of choice:

(.venv)$./manage.py runserver 0.0.0.0:8000

Once finished, you can kill the server (Ctrl+C) and exit the virtual environment:

(.venv)$ deactivate
$

Should you wish to re-enter this environment, simply source the activate script again.

11.4 Django Debug Toolbar

Patchwork installs and enables the ‘Django Debug Toolbar’ application by default when using development settings
and requirements. This provides a configurable set of panels that display various debug information about the current
request/response and, when clicked, display more details about the panel’s content.

Important: By default, the toolbar is only displayed if you are developing on localhost. If developing on
a different machine, you should configure an SSH tunnel such that, for example, localhost:8000 points to
[DEV_MACHINE_IP]:8000.

For more information, refer to the documentation.

46 Chapter 11. Installation

http://blog.behnel.de/posts/indexp118.html
https://django-debug-toolbar.readthedocs.io/en/stable/

Patchwork, Release 2.2.6.alpha.0

11.5 Django Database Backup

Patchwork installs and enables the ‘Django Database Backup’ application by default when using development settings
and requirements. This provides the following management commands, which can be useful for hacking on Patchwork:

• dbbackup

• dbrestore

• mediabackup

• mediarestore

For more information, refer to the documentation.

11.6 Environment Variables

The following environment variables are available to configure settings when using the provided dev settings file.

PW_TEST_DB_NAME=patchwork Name of the database

PW_TEST_DB_USER=patchwork Username to access the database with

PW_TEST_DB_PASS=password Password to access the database with<

PW_TEST_DB_TYPE=mysql Type of database to use. Options: mysql, postgres

11.5. Django Database Backup 47

https://django-dbbackup.readthedocs.io/en/stable/

Patchwork, Release 2.2.6.alpha.0

48 Chapter 11. Installation

CHAPTER 12

Release Process

12.1 Versioning

There are two types of versioning in play in Patchwork: the version for Patchwork itself (i.e. the code or core) and the
version for the REST API <../api/rest>.

12.1.1 Patchwork Code

Since version 1.0, Patchwork has implemented a version of Semantic Versioning . To summarise, releases take the
format MAJOR.MINOR.PATCH (or just MAJOR.MINOR). We increment:

1. MAJOR version when we make major UI changes or functionality updates

2. MINOR version when we make minor UI changes or functionality updates

3. PATCH version when we make make bug fixes, dependency updates etc.

In Git, each release will have a tag indicating the version number. In addition, each release series has it’s own branch
called stable/MAJOR.MINOR to allow backporting of bugfixes or security updates to older versions.

12.1.2 REST API

The REST API also uses a variant of Semantic Versioning. To summarise, API versions take the format MA-
JOR.MINOR. We increment:

1. MAJOR version when we make breaking changes to the API. This generally means removing an API or fields
in an API.

2. MINOR version when we add functionality in a backwards-compatible manner. This generally means adding
new fields and endpoint.

These version numbers are exposed via the API and it’s possible to request a specific version in the URL. Refer to the
API Guide <../api/rest> for more information.

49

http://semver.org/

Patchwork, Release 2.2.6.alpha.0

12.2 Release Cycle

There is no cadence for releases: they are made available as necessary.

12.3 Supported Versions

Typically all development should occur on master. While we will backport bugfixes and security updates, we will
not backport any new features. This is to ensure stability for users of these versions of Patchwork.

12.4 Release Checklist

The follow steps apply to all releases:

• Documentation has been updated with latest release version

• Documentation references latest supported version of Django

• ‘alpha’ tag has been removed from __version__ in patchwork/__init__.py

• Commit has been tagged with an annotated tag. The tag should take the form v[MAJOR].[MINOR].[PATCH],
e.g. v2.0.1. The message should read:

Version [MAJOR].[MINOR].[PATCH]

• A GitHub Release, with text corresponding to an abbreviated form of the release notes for that cycle, has been
created

• An email describing the release and top-level overview of the changes has been sent to the mailing list. Refer to
the emails for Patchwork v2.0.0 and Patchwork v2.0.1 for examples.

The following only apply to full releases, or those where the MAJOR or MINOR number is incremented:

• A new branch called stable/MAJOR.MINOR has been created from the tagged commit

Once released, bump the version found in patchwork/__init__.py once again.

12.5 Backporting

We will occasionally backport bugfixes and security updates. When backporting a patch, said patch should first be
merged into master. Once merged, you can backport by cherry-picking commits, using the -x flag for posterity:

$ git cherry-pick -x <master_commit>

There may be some conflicts; resolve these, uncommenting the Conflicts line when committing:

Conflicts
patchwork/bin/pwclient

When enough patches have been backported, you should release a new PATCH release.

50 Chapter 12. Release Process

https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://github.com/getpatchwork/patchwork/releases/new
https://lists.ozlabs.org/pipermail/patchwork/2017-August/004549.html
https://lists.ozlabs.org/pipermail/patchwork/2017-December/004683.html

Patchwork, Release 2.2.6.alpha.0

12.5.1 Backport criteria

We consider bug fixes and security updates to the Patchwork code itself valid for backporting, along with fixes to
documentation and developer tooling. We do not, however, consider the following backportable:

Features Backporting features is complicated and introduces instability in what is supposed to be stable release. If
new features are required, users should update their Patchwork version.

API changes Except for bug fixes that resolve 5xx-class errors or fix security issues. This also applies to API versions.

Requirement changes Requirements on a stable branch are provided as a “snapshot in time” and, as with features,
should not change so as to prevent instability being introduced in a stable branch. In addition, stable require-
ments are not a mechanism to alert users to security vulnerabilities and should not be considered as such. Users
of stable branches should either rely on distro-provided dependencies, which generally maintain a snapshot-in-
time fork of packages and selectively backport fixes to them, or manage dependencies manually. In cases, where
using a distro-provided package necessitates minor changes to the Patchwork code, these can be discussed on a
case-by-case basis.

12.5. Backporting 51

Patchwork, Release 2.2.6.alpha.0

52 Chapter 12. Release Process

CHAPTER 13

Using the APIs

Patchwork provides two APIs: the legacy XML-RPC API and the REST API. You can use these APIs to interact with
Patchwork programmatically and to develop your own clients.

For quick usage examples of the APIs, refer to the documentation. For examples of existing clients, refer to Clients.

53

Patchwork, Release 2.2.6.alpha.0

54 Chapter 13. Using the APIs

CHAPTER 14

Static Assets

Patchwork relies on a number of third-party JavaScript libraries. These, along with their supporting assets and the
Patchwork-only libraries and assets, are described below.

14.1 css

bootstrap.min.css

CSS for the Bootstrap library.

Refer to the js section below for more information on Bootstrap.

selectize.bootstrap3.css

CSS for the Selectize library.

Refer to the js section below for more information on Selectize.

style.css

Custom, Patchwork styling. Mostly a collection of overrides for default Bootstrap styles.

Part of Patchwork.

14.2 fonts

glyphicons-halflings-regular.*

Library of precisely prepared monochromatic icons and symbols, created with an emphasis to simplicity
and easy orientation. Provided as part of the Bootstrap library.

These are in multiple formats to support different browsers/environments. Refer to the js section below
for more information on Bootstrap.

55

Patchwork, Release 2.2.6.alpha.0

14.3 js

bootstrap.js

The most popular HTML, CSS, and JavaScript framework for developing responsive, mobile first projects
on the web.

This is used for the main UI of Patchwork.

Website https://getbootstrap.com/

GitHub https://github.com/twbs/bootstrap/

Version 3.2.0

bundle.js

Utility functions for bundle patch list manipulation (re-ordering patches, etc.)

Part of Patchwork.

clipboard.min.js

Modern copy to clipboard. No Flash. Just 3kb gzipped

This is used to allow us to “click to copy” various elements in the UI.

Website https://clipboardjs.com/

GitHub https://github.com/zenorocha/clipboard.js/

Version 1.7.1

jquery.js

jQuery is a fast, small, and feature-rich JavaScript library. It makes things like HTML document traversal
and manipulation, event handling, animation, and Ajax much simpler with an easy-to-use API that works
across a multitude of browsers. With a combination of versatility and extensibility, jQuery has changed
the way that millions of people write JavaScript.

This is used across Patchwork, including by the likes of bundle.js, as well as by the various plugins
below.

Website https://jquery.com/

GitHub https://github.com/jquery/jquery

Version 1.10.1

jquery.checkboxes.js

A jQuery plugin that gives you nice powers over your checkboxes.

This is used to allow shift-select of checkboxes on the patch list page.

Website http://rmariuzzo.github.io/checkboxes.js

GitHub https://github.com/rmariuzzo/checkboxes.js

Version 1.0.6

jquery.stickytableheaders.js

A jQuery plugin that makes large tables more usable by having the table header stick to the top of the
screen when scrolling.

This is used to ensure the heads on the patch list page stay at the top as we scroll.

56 Chapter 14. Static Assets

https://getbootstrap.com/
https://github.com/twbs/bootstrap/
https://clipboardjs.com/
https://github.com/zenorocha/clipboard.js/
https://jquery.com/
https://github.com/jquery/jquery
http://rmariuzzo.github.io/checkboxes.js
https://github.com/rmariuzzo/checkboxes.js

Patchwork, Release 2.2.6.alpha.0

GitHub https://github.com/jmosbech/StickyTableHeaders

Version 0.1.19

jquery.tablednd.js

jQuery plug-in to drag and drop rows in HTML tables.

This is used by the bundle patch list to allow us to control the order of the patches in said bundle.

Website http://www.isocra.com/2008/02/table-drag-and-drop-jquery-plugin/

GitHub jQuery plug-in to drag and drop rows in HTML tables

Version ???

selectize.min.js

Selectize is the hybrid of a textbox and <select> box. It’s jQuery based and it has autocomplete and
native-feeling keyboard navigation; useful for tagging, contact lists, etc.

Website https://selectize.github.io/selectize.js/

GitHub https://github.com/selectize/selectize.js

Version 0.11.2

14.3. js 57

https://github.com/jmosbech/StickyTableHeaders
http://www.isocra.com/2008/02/table-drag-and-drop-jquery-plugin/
https://selectize.github.io/selectize.js/
https://github.com/selectize/selectize.js

Patchwork, Release 2.2.6.alpha.0

58 Chapter 14. Static Assets

CHAPTER 15

The REST API

Patchwork provides a REST API. This API can be used to retrieve and modify information about patches, projects and
more.

This guide provides an overview of how one can interact with the REST API. For detailed information on type and
response format of the various resources exposed by the API, refer to the web browsable API. This can be found at:

https://patchwork.example.com/api/1.2/

where patchwork.example.com refers to the URL of your Patchwork instance.

If all you want is reference guides, skip straight to Schemas.

Important: The REST API can be enabled/disabled by the administrator: it may not be available in every instance.
Refer to /about on your given instance for the status of the API, e.g.

https://patchwork.ozlabs.org/about

New in version 2.0: The REST API was introduced in Patchwork v2.0. Users of earlier Patchwork versions should
instead refer to XML-RPC API documentation.

Changed in version 2.1: The API version was bumped to v1.1 in Patchwork v2.1. The older v1.0 API is still supported.
For more information, refer to Supported Versions.

Changed in version 2.2: The API version was bumped to v1.2 in Patchwork v2.2. The older APIs are still supported.
For more information, refer to Supported Versions.

15.1 Getting Started

The easiest way to start experimenting with the API is to use the web browsable API, as described above.

REST APIs run over plain HTTP(S), thus, the API can be interfaced using applications or libraries that support this
widespread protocol. One such application is curl, which can be used to both retrieve and send information to the REST
API. For example, to get the version of the REST API for a Patchwork instance hosted at patchwork.example.com,
run:

59

https://patchwork.example.com/api/1.2/
https://patchwork.ozlabs.org/about
https://curl.haxx.se/

Patchwork, Release 2.2.6.alpha.0

$ curl -s 'https://patchwork.example.com/api/1.2/' | python -m json.tool
{

"bundles": "https://patchwork.example.com/api/1.2/bundles/",
"covers": "https://patchwork.example.com/api/1.2/covers/",
"events": "https://patchwork.example.com/api/1.2/events/",
"patches": "https://patchwork.example.com/api/1.2/patches/",
"people": "https://patchwork.example.com/api/1.2/people/",
"projects": "https://patchwork.example.com/api/1.2/projects/",
"series": "https://patchwork.example.com/api/1.2/series/",
"users": "https://patchwork.example.com/api/1.2/users/"

}

In addition, a huge variety of libraries are available for interacting with and parsing the output of REST APIs. The
requests library is wide-spread and well-supported. To repeat the above example using requests:, run

$ python
>>> import json
>>> import requests
>>> r = requests.get('https://patchwork.example.com/api/1.2/')
>>> print(json.dumps(r.json(), indent=2))
{

"bundles": "https://patchwork.example.com/api/1.2/bundles/",
"covers": "https://patchwork.example.com/api/1.2/covers/",
"events": "https://patchwork.example.com/api/1.2/events/",
"patches": "https://patchwork.example.com/api/1.2/patches/",
"people": "https://patchwork.example.com/api/1.2/people/",
"projects": "https://patchwork.example.com/api/1.2/projects/",
"series": "https://patchwork.example.com/api/1.2/series/",
"users": "https://patchwork.example.com/api/1.2/users/"

}

Tools like curl and libraries like requests can be used to build anything from small utilities to full-fledged clients
targeting the REST API. For an overview of existing API clients, refer to Clients.

Tip: While you can do a lot with existing installations, it’s possible that you might not have access to all resources
or may not wish to modify any existing resources. In this case, it might be better to deploy your own instance of
Patchwork locally and experiment with that instead.

15.2 Versioning

By default, all requests will receive the latest version of the API: currently 1.2:

GET /api HTTP/1.1

You should explicitly request this version through the URL to prevent API changes breaking your application:

GET /api/1.2 HTTP/1.1

Older API versions will be deprecated and removed over time. For more information, refer to Supported Versions.

60 Chapter 15. The REST API

http://docs.python-requests.org/en/master/

Patchwork, Release 2.2.6.alpha.0

15.3 Schema

Responses are returned as JSON. Blank fields are returned as null, rather than being omitted. Timestamps use the
ISO 8601 format, times are by default in UTC:

YYYY-MM-DDTHH:MM:SSZ

Requests should use either query parameters or form-data, depending on the method. Further information is provided
below.

15.3.1 Summary Representations

Some resources are particularly large or expensive to compute. When listing these resources, a summary representation
is returned that omits certain fields. To get all fields, fetch the detailed representation. For example, listing patches
will return summary representations for each patch:

GET /patches HTTP/1.1

15.3.2 Detailed Representations

When fetching an individual resource, all fields will be returned. For example, fetching a patch with an ID of 123 will
return all available fields for that particular resource:

GET /patches/123 HTTP/1.1

15.4 Parameters

Most API methods take optional parameters. For GET requests, these parameters are mostly used for filtering and
should be passed as a HTTP query string parameters:

$ curl 'https://patchwork.example.com/api/patches?state=under-review'

For all other types of requests, including POST and PATCH, these parameters should be encoded as JSON with a
Content-Type of application/json or passed as form-encoded data:

$ curl -X PATCH \
--header "Content-Type: application/json" \
--data '{"state":"under-review"}' \
'http://localhost:8000/api/patches/123/'

$ curl -X PATCH \
--form 'state=under-review' \
'https://patchwork.example.com/api/patches/123'

Important: If you do not include the Content-Type header in your request, you will receive a HTTP 200 (OK)
but the resource will not be updated. This header must be included.

Changed in version 2.1: API version 1.1 allows filters to be specified multiple times. Prior to this, only the last value
for a given filter key would be used.

15.3. Schema 61

Patchwork, Release 2.2.6.alpha.0

15.5 Authentication

Patchwork supports authentication using your username and password (basic authentication) or with a token (token
authentication). The latter is recommended.

To authenticate with token authentication, you must first obtain a token. This can be done from your profile, e.g.
https://patchwork.example.com/user. Once you have a token, run:

$ curl -H "Authorization: Token ${token}" \
'https://patchwork.example.com/api/'

To authenticate using basic auth, you should use your Patchwork username and password. To do this, run:

$ curl -u ${username}:${password} \
'https://patchwork.example.com/api/'

Not all resources require authentication. Those that do will return 404 (Not Found) if authentication is not
provided to avoid leaking information.

15.6 Pagination

Requests that return multiple items will be paginated by 30 items by default, though this can vary from instance to
instance. You can change page using the ?page parameter. You can also set custom page sizes up to 100 on most
endpoints using the ?per_page parameter.

$ curl 'https://patchwork.example.com/api/patches?page=2&per_page=100'

15.6.1 Link Header

The Link header includes pagination information:

Link: <https://patchwork.example.com/api/patches?page=3&per_page=100>; rel="next",
<https://patchwork.example.com/api/patches?page=50&per_page=100>; rel="last"

The possible rel values are:

Name Description
next The link relation for the immediate next page of results.
last The link relation for the last page of results.
first The link relation for the first page of results.
prev The link relation for the immediate previous page of results.

15.7 Supported Versions

API Version Since Supported?
1.0 2.0 X
1.1 2.1 X
1.2 2.2 X

62 Chapter 15. The REST API

https://patchwork.example.com/user
https://tools.ietf.org/html/rfc5988

Patchwork, Release 2.2.6.alpha.0

Further information about this and more can typically be found in the release notes.

15.8 Schemas

Auto-generated schema documentation is provided below.

15.8.1 API v1.0

GET /api/1.0/
List API resources.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"bundles": "https://example.com",
"covers": "https://example.com",
"events": "https://example.com",
"patches": "https://example.com",
"people": "https://example.com",
"projects": "https://example.com",
"users": "https://example.com",
"series": "https://example.com"

}

GET /api/1.0/bundles/
List bundles.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• project (string) – An ID or linkname of a project to filter bundles by.

• owner (string) – An ID or username of a user to filter bundles by.

• public (string) – Show only public (true) or private (false) bundles.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",

(continues on next page)

15.8. Schemas 63

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"project": {
"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"name": "string",
"owner": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"patches": [

{
"id": 1,
"url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
],
"public": true,
"mbox": "https://example.com"

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.0/bundles/{id}/
Show a bundle.

Parameters

• id (integer) – A unique integer value identifying this bundle.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",

(continues on next page)

64 Chapter 15. The REST API

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"project": {
"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"name": "string",
"owner": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"patches": [

{
"id": 1,
"url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
],
"public": true,
"mbox": "https://example.com"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.0/covers/
List cover letters.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

15.8. Schemas 65

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

• since (string) – Earliest date-time to retrieve results for.

• project (string) – An ID or linkname of a project to filter cover letters by.

• series (string) – An ID of a series to filter cover letters by.

• submitter (string) – An ID or email address of a person to filter cover letters by.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"msgid": "string",
"date": "string",
"name": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"series": [

{
"id": 1,
"url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
]

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.0/covers/{id}/
Show a cover letter.

66 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5

Patchwork, Release 2.2.6.alpha.0

Parameters

• id (integer) – A unique integer value identifying this cover letter.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"msgid": "string",
"date": "string",
"name": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"series": [

{
"id": 1,
"url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"headers": [

"string"
],
"content": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

15.8. Schemas 67

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

GET /api/1.0/covers/{id}/comments/
List comments

Parameters

• id (integer) – A unique integer value identifying the parent cover letter.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"msgid": "string",
"date": "string",
"subject": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"content": "string",
"headers": [

"string"
]

}
]

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.0/events/
List events.

68 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5

Patchwork, Release 2.2.6.alpha.0

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

• since (string) – Earliest date-time to retrieve results for.

• project (string) – An ID or linkname of a project to filter events by.

• category (string) – An event category to filter events by.

• series (integer) – An ID of a series to filter events by.

• patch (integer) – An ID of a patch to filter events by.

• cover (integer) – An ID of a cover letter to filter events by.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"category": "cover-created",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"cover": "string"
}

},
{

"id": 1,
"category": "patch-created",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

(continues on next page)

15.8. Schemas 69

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

},
"date": "string",
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
}

},
{

"id": 1,
"category": "patch-completed",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"series": {

"id": 1,
"url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
}

},
{

"id": 1,
"category": "patch-state-changed",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",

(continues on next page)

70 Chapter 15. The REST API

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"previous_state": "string",
"current_state": "string"

}
},
{

"id": 1,
"category": "patch-delegated",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"previous_delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"current_delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

(continues on next page)

15.8. Schemas 71

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

}
}

},
{

"id": 1,
"category": "check-created",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"check": {

"id": 1,
"url": "https://example.com",
"date": "string",
"state": "pending",
"target_url": "https://example.com",
"context": "string"

}
}

},
{

"id": 1,
"category": "series-created",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"series": {
"id": 1,
"url": "https://example.com",
"name": "string",

(continues on next page)

72 Chapter 15. The REST API

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"date": "string",
"version": 1,
"mbox": "https://example.com"

}
}

},
{

"id": 1,
"category": "series-completed",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"series": {
"id": 1,
"url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
}

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.0/patches/
List patches.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

• since (string) – Earliest date-time to retrieve results for.

• project (string) – An ID or linkname of a project to filter patches by.

• series (integer) – An ID of a series to filter patches by.

15.8. Schemas 73

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5

Patchwork, Release 2.2.6.alpha.0

• submitter (string) – An ID or email address of a person to filter patches by.

• delegate (string) – An ID or username of a user to filter patches by.

• state (string) – A slug representation of a state to filter patches by.

• archived (string) – Show only archived (true) or non-archived (false) patches.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"msgid": "string",
"date": "string",
"name": "string",
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"hash": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{
"id": 1,
"url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,

(continues on next page)

74 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"mbox": "https://example.com"
}

],
"check": "pending",
"checks": "https://example.com",
"tags": [

"string"
]

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.0/patches/{id}/
Show a patch.

Parameters

• id (integer) – A unique integer value identifying this patch.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"msgid": "string",
"date": "string",
"name": "string",
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"hash": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

(continues on next page)

15.8. Schemas 75

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

},
"delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{
"id": 1,
"url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"check": "pending",
"checks": "https://example.com",
"tags": [

"string"
],
"headers": [

"string"
],
"content": "string",
"diff": "string",
"prefixes": [

"string"
]

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PATCH /api/1.0/patches/{id}/
Update a patch (partial).

Parameters

• id (integer) – A unique integer value identifying this patch.

Example request:

PATCH /api/1.0/patches/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

(continues on next page)

76 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

{
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"delegate": 1

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"msgid": "string",
"date": "string",
"name": "string",
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"hash": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{
"id": 1,

(continues on next page)

15.8. Schemas 77

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"check": "pending",
"checks": "https://example.com",
"tags": [

"string"
],
"headers": [

"string"
],
"content": "string",
"diff": "string",
"prefixes": [

"string"
]

}

• 400 Bad Request – Invalid Request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"state": "string",
"delegate": "string",
"commit_ref": "string",
"archived": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

78 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

PUT /api/1.0/patches/{id}/
Update a patch.

Parameters

• id (integer) – A unique integer value identifying this patch.

Example request:

PUT /api/1.0/patches/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"delegate": 1

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"msgid": "string",
"date": "string",
"name": "string",
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"hash": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"delegate": {

"id": 1,
"url": "https://example.com",

(continues on next page)

15.8. Schemas 79

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{
"id": 1,
"url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"check": "pending",
"checks": "https://example.com",
"tags": [

"string"
],
"headers": [

"string"
],
"content": "string",
"diff": "string",
"prefixes": [

"string"
]

}

• 400 Bad Request – Invalid Request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"state": "string",
"delegate": "string",
"commit_ref": "string",
"archived": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

80 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.0/patches/{id}/comments/
List comments

Parameters

• id (integer) – A unique integer value identifying the parent patch.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"msgid": "string",
"date": "string",
"subject": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"content": "string",
"headers": [

"string"
]

}
]

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{

(continues on next page)

15.8. Schemas 81

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"detail": "string"
}

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.0/patches/{patch_id}/checks/
List checks.

Parameters

• patch_id (integer) – A unique integer value identifying the parent patch.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

• since (string) – Earliest date-time to retrieve results for.

• user (string) – An ID or username of a user to filter checks by.

• state (string) – A check state to filter checks by.

• context (string) – A check context to filter checks by.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"user": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"date": "string",
"state": "pending",
"target_url": "https://example.com",
"context": "string",
"description": "string"

}
]

82 Chapter 15. The REST API

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

POST /api/1.0/patches/{patch_id}/checks/
Create a check.

Parameters

• patch_id (integer) – A unique integer value identifying the parent patch.

Example request:

POST /api/1.0/patches/{patch_id}/checks/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"state": "pending",
"target_url": "https://example.com",
"context": "string",
"description": "string"

}

Status Codes

• 201 Created – Example response:

HTTP/1.1 201 Created
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"user": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"date": "string",
"state": "pending",
"target_url": "https://example.com",
"context": "string",

(continues on next page)

15.8. Schemas 83

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"description": "string"
}

• 400 Bad Request – Invalid Request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"state": "string",
"target_url": "string",
"context": "string",
"description": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.0/patches/{patch_id}/checks/{check_id}/
Show a check.

Parameters

• patch_id (integer) – A unique integer value identifying the parent patch.

• check_id (integer) – A unique integer value identifying this check.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"user": {

(continues on next page)

84 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"date": "string",
"state": "pending",
"target_url": "https://example.com",
"context": "string",
"description": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.0/people/
List people.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com",
"user": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}

(continues on next page)

15.8. Schemas 85

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

}
]

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.0/people/{id}/
Show a person.

Parameters

• id (integer) – A unique integer value identifying this person.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com",
"user": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

86 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Patchwork, Release 2.2.6.alpha.0

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.0/projects/
List projects.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"maintainers": [

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
]

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

15.8. Schemas 87

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5

Patchwork, Release 2.2.6.alpha.0

GET /api/1.0/projects/{id}/
Show a project.

Parameters

• id (integer) – A unique integer value identifying this project.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"maintainers": [

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
]

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PATCH /api/1.0/projects/{id}/
Update a project (partial).

Parameters

• id (integer) – A unique integer value identifying this project.

Example request:

PATCH /api/1.0/projects/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
(continues on next page)

88 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"maintainers": [

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
]

}

• 400 Bad Request – Bad request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

15.8. Schemas 89

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Patchwork, Release 2.2.6.alpha.0

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PUT /api/1.0/projects/{id}/
Update a project.

Parameters

• id (integer) – A unique integer value identifying this project.

Example request:

PUT /api/1.0/projects/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"maintainers": [

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
]

}

90 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

• 400 Bad Request – Bad request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.0/series/
List series.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

• since (string) – Earliest date-time to retrieve results for.

• submitter (string) – An ID or email address of a person to filter series by.

• project (string) – An ID or linkname of a project to filter series by.

Status Codes

• 200 OK – Example response:

15.8. Schemas 91

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"name": "string",
"date": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"version": 1,
"total": 1,
"received_total": 1,
"received_all": true,
"mbox": "https://example.com",
"cover_letter": {

"id": 1,
"url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"patches": [

{
"id": 1,
"url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
]

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.0/series/{id}/

92 Chapter 15. The REST API

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5

Patchwork, Release 2.2.6.alpha.0

Show a series.

Parameters

• id (integer) – A unique integer value identifying this series.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"name": "string",
"date": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"version": 1,
"total": 1,
"received_total": 1,
"received_all": true,
"mbox": "https://example.com",
"cover_letter": {

"id": 1,
"url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"patches": [

{
"id": 1,
"url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
]

}

15.8. Schemas 93

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.0/users/
List users.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
]

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.0/users/{id}/
Show a user.

Parameters

94 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5

Patchwork, Release 2.2.6.alpha.0

• id (integer) – A unique integer value identifying this user.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PATCH /api/1.0/users/{id}/
Update a user (partial).

Parameters

• id (integer) – A unique integer value identifying this user.

Example request:

PATCH /api/1.0/users/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"first_name": "string",
"last_name": "string"

}

Status Codes

• 200 OK – Example response:

15.8. Schemas 95

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}

• 400 Bad Request – Bad request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"first_name": "string",
"last_name": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PUT /api/1.0/users/{id}/
Update a user.

Parameters

• id (integer) – A unique integer value identifying this user.

Example request:

PUT /api/1.0/users/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

(continues on next page)

96 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

{
"first_name": "string",
"last_name": "string"

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}

• 400 Bad Request – Bad request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"first_name": "string",
"last_name": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

15.8. Schemas 97

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

15.8.2 API v1.1

GET /api/1.1/
List API resources.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"bundles": "https://example.com",
"covers": "https://example.com",
"events": "https://example.com",
"patches": "https://example.com",
"people": "https://example.com",
"projects": "https://example.com",
"users": "https://example.com",
"series": "https://example.com"

}

GET /api/1.1/bundles/
List bundles.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• project (string) – An ID or linkname of a project to filter bundles by.

• owner (string) – An ID or username of a user to filter bundles by.

• public (string) – Show only public (true) or private (false) bundles.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",

(continues on next page)

98 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"name": "string",
"owner": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"patches": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
],
"public": true,
"mbox": "https://example.com"

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.1/bundles/{id}/
Show a bundle.

Parameters

• id (integer) – A unique integer value identifying this bundle.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",

(continues on next page)

15.8. Schemas 99

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"name": "string",
"owner": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"patches": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
],
"public": true,
"mbox": "https://example.com"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.1/covers/
List cover letters.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

• since (string) – Earliest date-time to retrieve results for.

• project (string) – An ID or linkname of a project to filter cover letters by.

• series (string) – An ID of a series to filter cover letters by.

100 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

• submitter (string) – An ID or email address of a person to filter cover letters by.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"msgid": "string",
"date": "string",
"name": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"comments": "https://example.com"

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.1/covers/{id}/
Show a cover letter.

Parameters

15.8. Schemas 101

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5

Patchwork, Release 2.2.6.alpha.0

• id (integer) – A unique integer value identifying this cover letter.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"msgid": "string",
"date": "string",
"name": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"comments": "https://example.com",
"headers": [

"string"
],
"content": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

(continues on next page)

102 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

{
"detail": "string"

}

GET /api/1.1/covers/{id}/comments/
List comments

Parameters

• id (integer) – A unique integer value identifying the parent cover letter.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"web_url": "https://example.com",
"msgid": "string",
"date": "string",
"subject": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"content": "string",
"headers": [

"string"
]

}
]

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

Response Headers

15.8. Schemas 103

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.1/events/
List events.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

• since (string) – Earliest date-time to retrieve results for.

• project (string) – An ID or linkname of a project to filter events by.

• category (string) – An event category to filter events by.

• series (integer) – An ID of a series to filter events by.

• patch (integer) – An ID of a patch to filter events by.

• cover (integer) – An ID of a cover letter to filter events by.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"category": "cover-created",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"cover": "string"
}

},
{

"id": 1,
"category": "patch-created",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",

(continues on next page)

104 Chapter 15. The REST API

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
}

},
{

"id": 1,
"category": "patch-completed",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"series": {

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
}

},
{

(continues on next page)

15.8. Schemas 105

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"id": 1,
"category": "patch-state-changed",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"previous_state": "string",
"current_state": "string"

}
},
{

"id": 1,
"category": "patch-delegated",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"previous_delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",

(continues on next page)

106 Chapter 15. The REST API

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"current_delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
}

},
{

"id": 1,
"category": "check-created",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"check": {

"id": 1,
"url": "https://example.com",
"date": "string",
"state": "pending",
"target_url": "https://example.com",
"context": "string"

}
}

},
{

"id": 1,
"category": "series-created",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",

(continues on next page)

15.8. Schemas 107

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"series": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
}

},
{

"id": 1,
"category": "series-completed",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"date": "string",
"payload": {

"series": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
}

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.1/patches/
List patches.

Query Parameters

108 Chapter 15. The REST API

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5

Patchwork, Release 2.2.6.alpha.0

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

• since (string) – Earliest date-time to retrieve results for.

• project (string) – An ID or linkname of a project to filter patches by.

• series (integer) – An ID of a series to filter patches by.

• submitter (string) – An ID or email address of a person to filter patches by.

• delegate (string) – An ID or username of a user to filter patches by.

• state (string) – A slug representation of a state to filter patches by.

• archived (string) – Show only archived (true) or non-archived (false) patches.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"msgid": "string",
"date": "string",
"name": "string",
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"hash": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"delegate": {

"id": 1,
(continues on next page)

15.8. Schemas 109

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"comments": "https://example.com",
"check": "pending",
"checks": "https://example.com",
"tags": [

"string"
]

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.1/patches/{id}/
Show a patch.

Parameters

• id (integer) – A unique integer value identifying this patch.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",

(continues on next page)

110 Chapter 15. The REST API

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"msgid": "string",
"date": "string",
"name": "string",
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"hash": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"comments": "https://example.com",
"check": "pending",
"checks": "https://example.com",
"tags": [

"string"
],
"headers": [

"string"
],
"content": "string",
"diff": "string",
"prefixes": [

"string"
]

}

• 404 Not Found – Not found

Example response:

15.8. Schemas 111

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PATCH /api/1.1/patches/{id}/
Update a patch (partial).

Parameters

• id (integer) – A unique integer value identifying this patch.

Example request:

PATCH /api/1.1/patches/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"delegate": 1

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"msgid": "string",
"date": "string",
"name": "string",
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"hash": "string",

(continues on next page)

112 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"submitter": {
"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"comments": "https://example.com",
"check": "pending",
"checks": "https://example.com",
"tags": [

"string"
],
"headers": [

"string"
],
"content": "string",
"diff": "string",
"prefixes": [

"string"
]

}

• 400 Bad Request – Invalid Request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"state": "string",
"delegate": "string",
"commit_ref": "string",
"archived": "string"

}

• 403 Forbidden – Forbidden

15.8. Schemas 113

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Patchwork, Release 2.2.6.alpha.0

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PUT /api/1.1/patches/{id}/
Update a patch.

Parameters

• id (integer) – A unique integer value identifying this patch.

Example request:

PUT /api/1.1/patches/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"delegate": 1

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",

(continues on next page)

114 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"msgid": "string",
"date": "string",
"name": "string",
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"hash": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"comments": "https://example.com",
"check": "pending",
"checks": "https://example.com",
"tags": [

"string"
],
"headers": [

"string"
],
"content": "string",
"diff": "string",
"prefixes": [

"string"
]

}

• 400 Bad Request – Invalid Request

Example response:

15.8. Schemas 115

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Patchwork, Release 2.2.6.alpha.0

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"state": "string",
"delegate": "string",
"commit_ref": "string",
"archived": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.1/patches/{id}/comments/
List comments

Parameters

• id (integer) – A unique integer value identifying the parent patch.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"web_url": "https://example.com",
"msgid": "string",

(continues on next page)

116 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"date": "string",
"subject": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"content": "string",
"headers": [

"string"
]

}
]

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.1/patches/{patch_id}/checks/
List checks.

Parameters

• patch_id (integer) – A unique integer value identifying the parent patch.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

• since (string) – Earliest date-time to retrieve results for.

• user (string) – An ID or username of a user to filter checks by.

• state (string) – A check state to filter checks by.

• context (string) – A check context to filter checks by.

Status Codes

• 200 OK – Example response:

15.8. Schemas 117

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"user": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"date": "string",
"state": "pending",
"target_url": "https://example.com",
"context": "string",
"description": "string"

}
]

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

POST /api/1.1/patches/{patch_id}/checks/
Create a check.

Parameters

• patch_id (integer) – A unique integer value identifying the parent patch.

Example request:

POST /api/1.1/patches/{patch_id}/checks/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"state": "pending",
"target_url": "https://example.com",
"context": "string",
"description": "string"

}

118 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5

Patchwork, Release 2.2.6.alpha.0

Status Codes

• 201 Created – Example response:

HTTP/1.1 201 Created
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"user": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"date": "string",
"state": "pending",
"target_url": "https://example.com",
"context": "string",
"description": "string"

}

• 400 Bad Request – Invalid Request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"state": "string",
"target_url": "string",
"context": "string",
"description": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

15.8. Schemas 119

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

GET /api/1.1/patches/{patch_id}/checks/{check_id}/
Show a check.

Parameters

• patch_id (integer) – A unique integer value identifying the parent patch.

• check_id (integer) – A unique integer value identifying this check.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"user": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"date": "string",
"state": "pending",
"target_url": "https://example.com",
"context": "string",
"description": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.1/people/
List people.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

120 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com",
"user": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
}

]

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.1/people/{id}/
Show a person.

Parameters

• id (integer) – A unique integer value identifying this person.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com",
"user": {

"id": 1,
"url": "https://example.com",

(continues on next page)

15.8. Schemas 121

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.1/projects/
List projects.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",

(continues on next page)

122 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"maintainers": [
{

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
],
"subject_match": "string"

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.1/projects/{id}/
Show a project.

Parameters

• id (integer) – A unique integer value identifying this project.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"maintainers": [

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
],
"subject_match": "string"

}

• 404 Not Found – Not found

Example response:

15.8. Schemas 123

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PATCH /api/1.1/projects/{id}/
Update a project (partial).

Parameters

• id (integer) – A unique integer value identifying this project.

Example request:

PATCH /api/1.1/projects/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"maintainers": [

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
],
"subject_match": "string"

}

• 400 Bad Request – Bad request

Example response:

124 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Patchwork, Release 2.2.6.alpha.0

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PUT /api/1.1/projects/{id}/
Update a project.

Parameters

• id (integer) – A unique integer value identifying this project.

Example request:

PUT /api/1.1/projects/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{

(continues on next page)

15.8. Schemas 125

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"maintainers": [

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
],
"subject_match": "string"

}

• 400 Bad Request – Bad request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

126 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

GET /api/1.1/series/
List series.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

• since (string) – Earliest date-time to retrieve results for.

• submitter (string) – An ID or email address of a person to filter series by.

• project (string) – An ID or linkname of a project to filter series by.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"name": "string",
"date": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"version": 1,
"total": 1,
"received_total": 1,
"received_all": true,
"mbox": "https://example.com",
"cover_letter": {

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",

(continues on next page)

15.8. Schemas 127

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"patches": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
]

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.1/series/{id}/
Show a series.

Parameters

• id (integer) – A unique integer value identifying this series.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

},
"name": "string",
"date": "string",
"submitter": {

"id": 1,
"url": "https://example.com",

(continues on next page)

128 Chapter 15. The REST API

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"name": "string",
"email": "name@example.com"

},
"version": 1,
"total": 1,
"received_total": 1,
"received_all": true,
"mbox": "https://example.com",
"cover_letter": {

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"patches": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
]

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.1/users/
List users.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

15.8. Schemas 129

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
]

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.1/users/{id}/
Show a user.

Parameters

• id (integer) – A unique integer value identifying this user.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

(continues on next page)

130 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PATCH /api/1.1/users/{id}/
Update a user (partial).

Parameters

• id (integer) – A unique integer value identifying this user.

Example request:

PATCH /api/1.1/users/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"first_name": "string",
"last_name": "string"

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}

• 400 Bad Request – Bad request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{

(continues on next page)

15.8. Schemas 131

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"first_name": "string",
"last_name": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PUT /api/1.1/users/{id}/
Update a user.

Parameters

• id (integer) – A unique integer value identifying this user.

Example request:

PUT /api/1.1/users/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"first_name": "string",
"last_name": "string"

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",

(continues on next page)

132 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"email": "name@example.com"
}

• 400 Bad Request – Bad request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"first_name": "string",
"last_name": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

15.8.3 API v1.2 (latest)

GET /api/1.2/
List API resources.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"bundles": "https://example.com",
"covers": "https://example.com",
"events": "https://example.com",
"patches": "https://example.com",
"people": "https://example.com",
"projects": "https://example.com",

(continues on next page)

15.8. Schemas 133

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"users": "https://example.com",
"series": "https://example.com"

}

GET /api/1.2/bundles/
List bundles.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• project (string) – An ID or linkname of a project to filter bundles by.

• owner (string) – An ID or username of a user to filter bundles by.

• public (string) – Show only public (true) or private (false) bundles.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"name": "string",
"owner": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"patches": [

{

(continues on next page)

134 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
],
"public": true,
"mbox": "https://example.com"

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

POST /api/1.2/bundles/
Create a bundle.

Example request:

POST /api/1.2/bundles/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"name": "string",
"patches": [

1
],
"public": true

}

Status Codes

• 201 Created – Example response:

HTTP/1.1 201 Created
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",

(continues on next page)

15.8. Schemas 135

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"name": "string",
"owner": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"patches": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
],
"public": true,
"mbox": "https://example.com"

}

• 400 Bad Request – Invalid Request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"name": "string",
"patches": "string",
"public": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.2/bundles/{id}/
Show a bundle.

136 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Patchwork, Release 2.2.6.alpha.0

Parameters

• id (integer) – A unique integer value identifying this bundle.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"name": "string",
"owner": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"patches": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
],
"public": true,
"mbox": "https://example.com"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found

(continues on next page)

15.8. Schemas 137

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

Content-Type: application/json

{
"detail": "string"

}

PATCH /api/1.2/bundles/{id}/
Update a bundle (partial).

Parameters

• id (integer) – A unique integer value identifying this bundle.

Example request:

PATCH /api/1.2/bundles/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"name": "string",
"patches": [

1
],
"public": true

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"name": "string",
"owner": {

"id": 1,
"url": "https://example.com",
"username": "string",

(continues on next page)

138 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"patches": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
],
"public": true,
"mbox": "https://example.com"

}

• 400 Bad Request – Bad request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"name": "string",
"patches": "string",
"public": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PUT /api/1.2/bundles/{id}/
Update a bundle.

15.8. Schemas 139

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

Parameters

• id (integer) – A unique integer value identifying this bundle.

Example request:

PUT /api/1.2/bundles/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"name": "string",
"patches": [

1
],
"public": true

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"name": "string",
"owner": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"patches": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",

(continues on next page)

140 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"date": "string",
"name": "string",
"mbox": "https://example.com"

}
],
"public": true,
"mbox": "https://example.com"

}

• 400 Bad Request – Bad request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"name": "string",
"patches": "string",
"public": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.2/covers/
List cover letters.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

• since (string) – Earliest date-time to retrieve results for.

15.8. Schemas 141

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

• project (string) – An ID or linkname of a project to filter cover letters by.

• series (string) – An ID of a series to filter cover letters by.

• submitter (string) – An ID or email address of a person to filter cover letters by.

• msgid (string) – The cover message-id as a case-sensitive string, without leading or
trailing angle brackets, to filter by.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"comments": "https://example.com"

}
]

142 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.2/covers/{id}/
Show a cover letter.

Parameters

• id (integer) – A unique integer value identifying this cover letter.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],

(continues on next page)

15.8. Schemas 143

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"comments": "https://example.com",
"headers": [

"string"
],
"content": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.2/covers/{id}/comments/
List comments

Parameters

• id (integer) – A unique integer value identifying the parent cover letter.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"subject": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"content": "string",
"headers": [

"string"
]

(continues on next page)

144 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

}
]

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.2/events/
List events.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

• since (string) – Earliest date-time to retrieve results for.

• project (string) – An ID or linkname of a project to filter events by.

• category (string) – An event category to filter events by.

• series (integer) – An ID of a series to filter events by.

• patch (integer) – An ID of a patch to filter events by.

• cover (integer) – An ID of a cover letter to filter events by.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"category": "cover-created",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",

(continues on next page)

15.8. Schemas 145

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"date": "string",
"actor": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"payload": {

"cover": "string"
}

},
{

"id": 1,
"category": "patch-created",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"date": "string",
"actor": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",

(continues on next page)

146 Chapter 15. The REST API

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"name": "string",
"mbox": "https://example.com"

}
}

},
{

"id": 1,
"category": "patch-completed",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"date": "string",
"actor": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"series": {

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
}

},
{

"id": 1,
"category": "patch-state-changed",
"project": {

(continues on next page)

15.8. Schemas 147

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"date": "string",
"actor": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"previous_state": "string",
"current_state": "string"

}
},
{

"id": 1,
"category": "patch-relation-changed",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"date": "string",
"actor": {

"id": 1,
(continues on next page)

148 Chapter 15. The REST API

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"previous_relation": "string",
"current_relation": "string"

}
},
{

"id": 1,
"category": "patch-delegated",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"date": "string",
"actor": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

(continues on next page)

15.8. Schemas 149

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

},
"previous_delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"current_delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
}

},
{

"id": 1,
"category": "check-created",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"date": "string",
"actor": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"payload": {

"patch": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"check": {

(continues on next page)

150 Chapter 15. The REST API

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"id": 1,
"url": "https://example.com",
"date": "string",
"state": "pending",
"target_url": "https://example.com",
"context": "string"

}
}

},
{

"id": 1,
"category": "series-created",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"date": "string",
"actor": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"payload": {

"series": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
}

},
{

"id": 1,
"category": "series-completed",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",

(continues on next page)

15.8. Schemas 151

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"date": "string",
"actor": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"payload": {

"series": {
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
}

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.2/patches/
List patches.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

• since (string) – Earliest date-time to retrieve results for.

• project (string) – An ID or linkname of a project to filter patches by.

• series (integer) – An ID of a series to filter patches by.

• submitter (string) – An ID or email address of a person to filter patches by.

• delegate (string) – An ID or username of a user to filter patches by.

• state (string) – A slug representation of a state to filter patches by.

152 Chapter 15. The REST API

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5

Patchwork, Release 2.2.6.alpha.0

• archived (string) – Show only archived (true) or non-archived (false) patches.

• hash (string) – The patch hash as a case-insensitive hexadecimal string, to filter by.

• msgid (string) – The patch message-id as a case-sensitive string, without leading or
trailing angle brackets, to filter by.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"hash": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{

(continues on next page)

15.8. Schemas 153

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"comments": "https://example.com",
"check": "pending",
"checks": "https://example.com",
"tags": [

"string"
],
"related": [

"string"
]

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.2/patches/{id}/
Show a patch.

Parameters

• id (integer) – A unique integer value identifying this patch.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

(continues on next page)

154 Chapter 15. The REST API

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

},
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"hash": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"comments": "https://example.com",
"check": "pending",
"checks": "https://example.com",
"tags": [

"string"
],
"related": [

"string"
],
"headers": [

"string"
],
"content": "string",
"diff": "string",
"prefixes": [

"string"
]

}

• 404 Not Found – Not found

Example response:

15.8. Schemas 155

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PATCH /api/1.2/patches/{id}/
Update a patch (partial).

Parameters

• id (integer) – A unique integer value identifying this patch.

Example request:

PATCH /api/1.2/patches/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"delegate": 1,
"related": [

"string"
]

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"msgid": "string",
"list_archive_url": "string",

(continues on next page)

156 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"date": "string",
"name": "string",
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"hash": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"mbox": "https://example.com",
"series": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"comments": "https://example.com",
"check": "pending",
"checks": "https://example.com",
"tags": [

"string"
],
"related": [

"string"
],
"headers": [

"string"
],
"content": "string",
"diff": "string",
"prefixes": [

"string"
]

}

• 400 Bad Request – Invalid Request

Example response:

15.8. Schemas 157

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Patchwork, Release 2.2.6.alpha.0

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"state": "string",
"delegate": "string",
"commit_ref": "string",
"archived": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

• 409 Conflict – Conflict

Example response:

HTTP/1.1 409 Conflict
Content-Type: application/json

{
"detail": "string"

}

PUT /api/1.2/patches/{id}/
Update a patch.

Parameters

• id (integer) – A unique integer value identifying this patch.

Example request:

PUT /api/1.2/patches/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"commit_ref": "string",
"pull_url": "https://example.com",

(continues on next page)

158 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"state": "string",
"archived": true,
"delegate": 1,
"related": [

"string"
]

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"commit_ref": "string",
"pull_url": "https://example.com",
"state": "string",
"archived": true,
"hash": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"delegate": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},

(continues on next page)

15.8. Schemas 159

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"mbox": "https://example.com",
"series": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"name": "string",
"date": "string",
"version": 1,
"mbox": "https://example.com"

}
],
"comments": "https://example.com",
"check": "pending",
"checks": "https://example.com",
"tags": [

"string"
],
"related": [

"string"
],
"headers": [

"string"
],
"content": "string",
"diff": "string",
"prefixes": [

"string"
]

}

• 400 Bad Request – Invalid Request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"state": "string",
"delegate": "string",
"commit_ref": "string",
"archived": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

160 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

• 409 Conflict – Conflict

Example response:

HTTP/1.1 409 Conflict
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.2/patches/{id}/comments/
List comments

Parameters

• id (integer) – A unique integer value identifying the parent patch.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"subject": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"content": "string",
"headers": [

"string"

(continues on next page)

15.8. Schemas 161

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

]
}

]

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.2/patches/{patch_id}/checks/
List checks.

Parameters

• patch_id (integer) – A unique integer value identifying the parent patch.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

• since (string) – Earliest date-time to retrieve results for.

• user (string) – An ID or username of a user to filter checks by.

• state (string) – A check state to filter checks by.

• context (string) – A check context to filter checks by.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"user": {

"id": 1,
"url": "https://example.com",

(continues on next page)

162 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"date": "string",
"state": "pending",
"target_url": "https://example.com",
"context": "string",
"description": "string"

}
]

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

POST /api/1.2/patches/{patch_id}/checks/
Create a check.

Parameters

• patch_id (integer) – A unique integer value identifying the parent patch.

Example request:

POST /api/1.2/patches/{patch_id}/checks/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"state": "pending",
"target_url": "https://example.com",
"context": "string",
"description": "string"

}

Status Codes

• 201 Created – Example response:

HTTP/1.1 201 Created
Content-Type: application/json

{

(continues on next page)

15.8. Schemas 163

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"id": 1,
"url": "https://example.com",
"user": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"date": "string",
"state": "pending",
"target_url": "https://example.com",
"context": "string",
"description": "string"

}

• 400 Bad Request – Invalid Request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"state": "string",
"target_url": "string",
"context": "string",
"description": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.2/patches/{patch_id}/checks/{check_id}/
Show a check.

Parameters

164 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

• patch_id (integer) – A unique integer value identifying the parent patch.

• check_id (integer) – A unique integer value identifying this check.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"user": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

},
"date": "string",
"state": "pending",
"target_url": "https://example.com",
"context": "string",
"description": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.2/people/
List people.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

(continues on next page)

15.8. Schemas 165

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com",
"user": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
}

]

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.2/people/{id}/
Show a person.

Parameters

• id (integer) – A unique integer value identifying this person.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com",
"user": {

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

(continues on next page)

166 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

}
}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.2/projects/
List projects.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"maintainers": [

{
"id": 1,
"url": "https://example.com",

(continues on next page)

15.8. Schemas 167

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
],
"subject_match": "string",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.2/projects/{id}/
Show a project.

Parameters

• id (integer) – A unique integer value identifying this project.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"maintainers": [

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
],
"subject_match": "string",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

}

168 Chapter 15. The REST API

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PATCH /api/1.2/projects/{id}/
Update a project (partial).

Parameters

• id (integer) – A unique integer value identifying this project.

Example request:

PATCH /api/1.2/projects/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"maintainers": [

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}

(continues on next page)

15.8. Schemas 169

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

],
"subject_match": "string",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

}

• 400 Bad Request – Bad request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PUT /api/1.2/projects/{id}/
Update a project.

Parameters

• id (integer) – A unique integer value identifying this project.

Example request:

PUT /api/1.2/projects/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"web_url": "https://example.com",
"scm_url": "https://example.com",

(continues on next page)

170 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"maintainers": [

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
],
"subject_match": "string",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

}

• 400 Bad Request – Bad request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com"

}

• 403 Forbidden – Forbidden

Example response:

15.8. Schemas 171

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Patchwork, Release 2.2.6.alpha.0

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.2/series/
List series.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

• before (string) – Latest date-time to retrieve results for.

• since (string) – Earliest date-time to retrieve results for.

• submitter (string) – An ID or email address of a person to filter series by.

• project (string) – An ID or linkname of a project to filter series by.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",

(continues on next page)

172 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"name": "string",
"date": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"version": 1,
"total": 1,
"received_total": 1,
"received_all": true,
"mbox": "https://example.com",
"cover_letter": {

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"patches": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
]

}
]

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.2/series/{id}/
Show a series.

Parameters

• id (integer) – A unique integer value identifying this series.

Status Codes

• 200 OK – Example response:

15.8. Schemas 173

https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Patchwork, Release 2.2.6.alpha.0

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"project": {

"id": 1,
"url": "https://example.com",
"name": "string",
"link_name": "string",
"list_id": "string",
"list_email": "name@example.com",
"web_url": "https://example.com",
"scm_url": "https://example.com",
"webscm_url": "https://example.com",
"list_archive_url": "https://example.com",
"list_archive_url_format": "https://example.com",
"commit_url_format": "string"

},
"name": "string",
"date": "string",
"submitter": {

"id": 1,
"url": "https://example.com",
"name": "string",
"email": "name@example.com"

},
"version": 1,
"total": 1,
"received_total": 1,
"received_all": true,
"mbox": "https://example.com",
"cover_letter": {

"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

},
"patches": [

{
"id": 1,
"url": "https://example.com",
"web_url": "https://example.com",
"msgid": "string",
"list_archive_url": "string",
"date": "string",
"name": "string",
"mbox": "https://example.com"

}
]

}

174 Chapter 15. The REST API

Patchwork, Release 2.2.6.alpha.0

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

GET /api/1.2/users/
List users.

Query Parameters

• page (integer) – A page number within the paginated result set.

• per_page (integer) – Number of results to return per page.

• order (string) – Which field to use when ordering the results.

• q (string) – A search term.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com"

}
]

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

Response Headers

• Link – Links to related resources, in the format defined by [RFC 5988](https://tools.ietf.org/
html/rfc5988#section-5). This will include a link with relation type next to the next page, if
there is a next page.

GET /api/1.2/users/{id}/
Show a user.

Parameters

15.8. Schemas 175

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5
https://tools.ietf.org/html/rfc5988#section-5

Patchwork, Release 2.2.6.alpha.0

• id (integer) – A unique integer value identifying this user.

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com",
"settings": {

"send_email": true,
"items_per_page": 1,
"show_ids": true

}
}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PATCH /api/1.2/users/{id}/
Update a user (partial).

Parameters

• id (integer) – A unique integer value identifying this user.

Example request:

PATCH /api/1.2/users/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"first_name": "string",

(continues on next page)

176 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

"last_name": "string",
"settings": {

"send_email": true,
"items_per_page": 1,
"show_ids": true

}
}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com",
"settings": {

"send_email": true,
"items_per_page": 1,
"show_ids": true

}
}

• 400 Bad Request – Bad request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"first_name": "string",
"last_name": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

15.8. Schemas 177

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

PUT /api/1.2/users/{id}/
Update a user.

Parameters

• id (integer) – A unique integer value identifying this user.

Example request:

PUT /api/1.2/users/{id}/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"first_name": "string",
"last_name": "string",
"settings": {

"send_email": true,
"items_per_page": 1,
"show_ids": true

}
}

Status Codes

• 200 OK – Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"url": "https://example.com",
"username": "string",
"first_name": "string",
"last_name": "string",
"email": "name@example.com",
"settings": {

"send_email": true,
"items_per_page": 1,
"show_ids": true

}
}

• 400 Bad Request – Bad request

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

(continues on next page)

178 Chapter 15. The REST API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Patchwork, Release 2.2.6.alpha.0

(continued from previous page)

{
"first_name": "string",
"last_name": "string"

}

• 403 Forbidden – Forbidden

Example response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
"detail": "string"

}

• 404 Not Found – Not found

Example response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
"detail": "string"

}

15.8. Schemas 179

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Patchwork, Release 2.2.6.alpha.0

180 Chapter 15. The REST API

CHAPTER 16

The XML-RPC API

Patchwork provides an XML-RPC API. This API can be used to be used to retrieve and modify information about
patches, projects and more.

Important: The XML-RPC API can be enabled/disabled by the administrator: it may not be available in every
instance. Refer to /about on your given instance for the status of the API, e.g.

https://patchwork.ozlabs.org/about

Alternatively, simply attempt to make a request to the API.

Deprecated since version 2.0: The XML-RPC API is a legacy API and has been deprecated in favour of the REST API.
It will be removed in Patchwork 3.0.

16.1 Getting Started

The Patchwork XML-RPC API provides a number of “methods”. Some methods require authentication (via HTTP
Basic Auth) while others do not. Authentication uses your Patchwork account and the on-server documentation will
indicate where it is necessary. We will only cover the unauthenticated method here for brevity - consult the xmlrpclib
documentation for more detailed examples:

To interact with the Patchwork XML-RPC API, a XML-RPC library should be used. Python provides such a library
- xmlrpclib - in its standard library. For example, to get the version of the XML-RPC API for a Patchwork instance
hosted at patchwork.example.com, run:

$ python
>>> import xmlrpclib # or 'xmlrpc.client' for Python 3
>>> rpc = xmlrpclib.ServerProxy('http://patchwork.example.com/xmlrpc/')
>>> rpc.pw_rpc_version()
1.1

181

https://patchwork.ozlabs.org/about
https://docs.python.org/2/library/xmlrpclib.html
https://docs.python.org/2/library/xmlrpclib.html

Patchwork, Release 2.2.6.alpha.0

Once connected, the rpc object will be populated with a list of available functions (or procedures, in RPC terminol-
ogy). In the above example, we used the pw_rpc_version method, however, it should be possible to use all the
methods listed in the server documentation.

16.2 Further Information

Patchwork provides automatically generated documentation for the XML-RPC API. You can find this at the following
URL:

https://patchwork.example.com/xmlrpc/

where patchwork.example.com refers to the URL of your Patchwork instance.

Changed in version 1.1: Automatic documentation generation for the Patchwork API was introduced in Patchwork
v1.1. Prior versions of Patchwork do not offer this functionality.

182 Chapter 16. The XML-RPC API

https://patchwork.example.com/xmlrpc/

CHAPTER 17

Unreleased

17.1 v2.2.4

17.1.1 API Changes

• The list_archive_url field will now be correctly shown for patch comments and cover letter comments.
(#391)

17.2 v2.2.3

17.2.1 Bug Fixes

• Resolve a bug that would prevent listing patches for a project via the browseable API view when logged in with
admin permissions (issue #379)

17.3 v2.2.2

17.3.1 Bug Fixes

• An issue that preventing updating bundles via the REST API without updating the included patches has been
resolved. (#357)

• The parser module now uses an atomic select-insert when creating new patch, cover letter and comment entries.
This prevents the integrity errors from being logged in the DB logs. (#358)

183

https://github.com/getpatchwork/patchwork/issues/391
https://github.com/getpatchwork/patchwork/issues/379
https://github.com/getpatchwork/patchwork/issues/357
https://github.com/getpatchwork/patchwork/issues/358

Patchwork, Release 2.2.6.alpha.0

17.4 v2.2.1

17.4.1 API Changes

• The REST API now supports filtering patches and cover letters by message ID, using the msgid query param-
eter. Don’t include leading or trailing angle brackets.

17.5 v2.2.0

17.5.1 New Features

• Patches can now be related to other patches (e.g. to cross-reference revisions). Relations can be set via the
REST API by maintainers (currently only for patches of projects they maintain). Patches can belong to at most
one relation at a time.

• Django 2.0 is now supported. This requires Python 3.

• Django 2.1 is now supported. This requires Python 3.

• Django 2.2 is now supported. This requires Python 3.

• The patch-delegated, patch-state-changed and check-created events now have an actor
associated with them - the user that updated the patch or created the check. For other event types, this attribute
is present but unset.

• Add a field to Project to store a link to the project’s mailing list archive, and display that on the project info
page.

• Add a field to Project to store a URL format for a Message-ID redirector for the project’s mailing list archive,
and display a link to the email thread for each patch.

• Exporting patchwork projects as mbox files and optionally compressing them is now possible with the ./
manage exportproject management command.

• The URL schema now uses message IDs, rather than patch IDs, by default. Old URLs will redirect to the new
URLs.

• Python 3.7 is now supported.

• Python 3.8 is now supported.

17.5.2 Upgrade Notes

• django-filter 1.1 is now supported.

• django-filter 2.0 is now supported. This requires Python 3.

• Django REST Framework 3.10 is now supported.

• Django REST Framework 3.11 is now supported.

• Django REST Framework 3.7 is now supported.

• Django REST Framework 3.8 is now supported.

• Django REST Framework 3.9 is now supported.

• Python 3.4 is no longer supported. This is no longer supported upstream and most distributions provide a newer
version.

184 Chapter 17. Unreleased

https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/dev/releases/2.1/
https://docs.djangoproject.com/en/dev/releases/2.2/
https://www.python.org/downloads/release/python-370/
https://www.python.org/downloads/release/python-380/
https://github.com/carltongibson/django-filter/releases/tag/1.1.0
https://github.com/carltongibson/django-filter/releases/tag/2.0.0
https://www.django-rest-framework.org/community/3.10-announcement/
https://www.django-rest-framework.org/community/3.11-announcement/
https://www.django-rest-framework.org/community/3.7-announcement/
https://www.django-rest-framework.org/community/3.8-announcement/
https://www.django-rest-framework.org/community/3.9-announcement/

Patchwork, Release 2.2.6.alpha.0

• Django 1.8, 1.9 and 1.10 are no longer supported. These are no longer supported upstream and most distributions
provide a newer version.

• djangorestframework 3.4 and 3.5 are no longer supported. These were only used with Django 1.8 to 1.10 and
are not compatible with any version now supported by Patchwork.

• pwclient is no longer packaged with Patchwork. Instead, it is developed as a separate project on GitHub and
available from PyPI.

17.5.3 Bug Fixes

• CVE-2019-13122 has been fixed. Andrew Donnellan discovered an XSS via the message-id field. A malicious
user could send a patch with a message ID that included a script tag. Because of the quirks of the email RFCs,
such a message ID can survive being sent through many mail systems, including Gmail, and be parsed and stored
by Patchwork. When a user viewed a patch detail page for the patch with this message id, the script would be
run. This is fixed by properly escaping the field before it is rendered.

• Queries to the REST API with filters are now significantly faster: slow database queries were reworked.

• To avoid triggering spam filters due to failed signature validation, many mailing lists mangle the From header to
change the From address to be the address of the list, typically where the sender’s domain has a strict DMARC
policy enabled. This leads to incorrect senders being recorded. We now try to unmangle the From header using
the X-Original-From or Reply-To headers, as used by Google Groups and Mailman respectively.

• Assigning maintained projects when creating a new user in the admin page was causing an error. This is now
resolved.

• Long headers can be wrapped using CRLF followed by WSP (whitespace). This whitespace was not being
stripped, resulting in errant whitespace being saved for the patch subject. This is resolved though existing
patches and cover letters will need to be updated manually.

• An issue that resulted in checks for all patches being listed for each patch is resolved. (#203)

• An issue that prevented updating of delegates using the REST API is resolved. (#216)

• A project’s list_email, list_id and link_name fields can no longer be updated via the REST API.
This is a superuser-only operation that, for now, should only be done via the admin interface. (#217)

• It’s now possible to assign patches to existing bundles from a user’s TODO page. (#213)

• API resources with embedded series were not showing the web_url value for these series. This is now shown.

• Showing comments for a non-existant patch or cover letter was returning an empty response instead of a HTTP
404. This issue is resolved for both resources.

• Showing checks for a non-existant patch was returning an empty response instead of a HTTP 404. Similarly,
attempting to create a new check against this patch would result in a HTTP 5xx error instead of a HTTP 404.
Both issues are now resolved.

• Fields added in API v1.1 are now consistently excluded when requesting API v1.0, as was intended.

• #197 was the result of a issue with OzLabs instance and not Patchwork itself, and the fix included actually ended
up corrupting subjects for everyone. It has now been reverted.

• The pwclientrc samples generated by Patchwork were previously not valid INI files. This issue is resolved.
(#277)

• A bug that would result in patches from later series revisions being included in earlier revisions has been re-
solved.

• Previously, attempting to retrieve a patch that did not exist would result in a HTTP 500 (Internal Server Error)
being raised. This has been corrected and a HTTP 404 (Not Found) is now raised instead.

17.5. v2.2.0 185

https://github.com/getpatchwork/pwclient
https://pypi.org/project/pwclient/
https://github.com/getpatchwork/patchwork/issues/203
https://github.com/getpatchwork/patchwork/issues/216
https://github.com/getpatchwork/patchwork/issues/217
https://github.com/getpatchwork/patchwork/issues/213
https://github.com/getpatchwork/patchwork/issues/197
https://github.com/getpatchwork/patchwork/issues/277

Patchwork, Release 2.2.6.alpha.0

• In the past, Patchwork used to support filtering patches that weren’t delegated to anyone. This feature was
removed in v1.1.0, as part of a patch designed to support delegation to anyone. However, that feature didn’t
scale and was later removed. The ability to delegate to anyone is now itself re-introduced.

• The delegate and submitter fields will remain populated when moving between different pages or changing
filters. (#78)

17.5.4 API Changes

• Relations are available via /patches/{patchID}/ endpoint, in the related field.

• Allow ordering events from the events API by date. This can be done by adding order=date or
order=-date (the default) parameters.

• The /event API now exposes an actor attribute. It is possible to filter events by this attribute.

• The API version has been updated to v1.2.

• Projects now expose the list_archive_url and list_archive_url_format attributes.

• Patches, comments and cover letters now expose a list_archive_url attribute.

• The REST API now supports filtering patches by their hashes, using the hash query parameter.

• Bundles can now be created, updated and deleted via the REST API.

17.5.5 Security Notes

• Change the recommended method for generating the Django secret key to use a cryptographically secure random
number generator.

17.5.6 Other Notes

• The performance of various pages has been improved with the addition of some database indexes and optimiza-
tion of some queries.

17.6 v2.1.0

17.6.1 Bug Fixes

• If a patch was processed by Patchwork before series support was added, it will not have a series associated
with it. As a result, it is not possible to extract the dependencies for that patch from the series. This was not
previously handled correctly. A 404 is now raised if this occurs.

• The parsemail.sh and parsemail-batch.sh scripts, found in patchwork/bin, will now default
to using python rather than python2 for calling manage.py. This resolves an issue when Patchwork is
deployed with a virtualenv.

186 Chapter 17. Unreleased

https://github.com/getpatchwork/patchwork/issues/78

CHAPTER 18

v2.1 Series (“Eolienne”)

18.1 v2.1.6

18.1.1 Bug Fixes

• Queries to the REST API with filters are now significantly faster: slow database queries were reworked.

• An sql error was fixed in lib/sql/grant-all.postgres.sql.

18.2 v2.1.4

18.2.1 Bug Fixes

• CVE-2019-13122 has been fixed. Andrew Donnellan discovered an XSS via the message-id field. A malicious
user could send a patch with a message ID that included a script tag. Because of the quirks of the email RFCs,
such a message ID can survive being sent through many mail systems, including Gmail, and be parsed and stored
by Patchwork. When a user viewed a patch detail page for the patch with this message id, the script would be
run. This is fixed by properly escaping the field before it is rendered.

• The pwclientrc samples generated by Patchwork were previously not valid INI files. This issue is resolved.
(#277)

18.3 v2.1.3

18.3.1 Bug Fixes

• #197 was the result of a issue with OzLabs instance and not Patchwork itself, and the fix included actually ended
up corrupting subjects for everyone. It has now been reverted.

187

https://github.com/getpatchwork/patchwork/issues/277
https://github.com/getpatchwork/patchwork/issues/197

Patchwork, Release 2.2.6.alpha.0

• In the past, Patchwork used to support filtering patches that weren’t delegated to anyone. This feature was
removed in v1.1.0, as part of a patch designed to support delegation to anyone. However, that feature didn’t
scale and was later removed. The ability to delegate to anyone is now itself re-introduced.

18.4 v2.1.2

18.4.1 Upgrade Notes

• django-filter 1.1 is now supported.

• Django REST Framework 3.7 is now supported.

• Django REST Framework 3.8 is now supported.

• Django REST Framework 3.9 is now supported.

18.4.2 Bug Fixes

• Assigning maintained projects when creating a new user in the admin page was causing an error. This is now
resolved.

• Long headers can be wrapped using CRLF followed by WSP (whitespace). This whitespace was not being
stripped, resulting in errant whitespace being saved for the patch subject. This is resolved though existing
patches and cover letters will need to be updated manually.

• API resources with embedded series were not showing the web_url value for these series. This is now shown.

• Showing comments for a non-existant patch or cover letter was returning an empty response instead of a HTTP
404. This issue is resolved for both resources.

• Showing checks for a non-existant patch was returning an empty response instead of a HTTP 404. Similarly,
attempting to create a new check against this patch would result in a HTTP 5xx error instead of a HTTP 404.
Both issues are now resolved.

• Fields added in API v1.1 are now consistently excluded when requesting API v1.0, as was intended.

18.5 v2.1.1

18.5.1 Bug Fixes

• An issue that resulted in checks for all patches being listed for each patch is resolved. (#203)

• An issue that prevented updating of delegates using the REST API is resolved. (#216)

• A project’s list_email, list_id and link_name fields can no longer be updated via the REST API.
This is a superuser-only operation that, for now, should only be done via the admin interface. (#217)

• It’s now possible to assign patches to existing bundles from a user’s TODO page. (#213)

• The delegate and submitter fields will remain populated when moving between different pages or changing
filters. (#78)

188 Chapter 18. v2.1 Series (“Eolienne”)

https://github.com/carltongibson/django-filter/releases/tag/1.1.0
http://www.django-rest-framework.org/topics/release-notes/#370/
http://www.django-rest-framework.org/topics/release-notes/#380/
https://www.django-rest-framework.org/community/3.9-announcement/
https://github.com/getpatchwork/patchwork/issues/203
https://github.com/getpatchwork/patchwork/issues/216
https://github.com/getpatchwork/patchwork/issues/217
https://github.com/getpatchwork/patchwork/issues/213
https://github.com/getpatchwork/patchwork/issues/78

Patchwork, Release 2.2.6.alpha.0

18.6 v2.1.0

18.6.1 Prelude

The key part of this release is a major performance fix - denormalising the project field into patch model so that
counting a project’s patches doesn’t require a JOIN. This requires a migration and so isn’t suitable for a stable backport.
Event listing in the API has also been sped up by refactoring the queries.

This release also includes the feature development that had accrued in the mean time and numerous bug fixes.

The REST API version has been bumped to 1.1.

18.6.2 New Features

• Django 1.11 is now supported.

• Allow list filtering into multiple projects (and email dropping) based on subject prefixes. Enable by specifying
a regular expression which needs to be matched in the subject on a per-project basis (field subject_match).
Project with empty subject_match field (and matching list_id) serves as a default in case of no match.

• The pwclient get command will now download patches with a .patch extension.

• Python 3.6 is now supported.

18.6.3 Known Issues

• Series parsing in the presence of parallel mail processing is still unreliable.

• Several more minor issues can be browsed on our issue tracker.

18.6.4 Upgrade Notes

• Django 1.6 and 1.7 are no longer supported. These are no longer supported upstream and most distributions
provide a newer version.

• django-filter 0.11 is no longer supported. This was only used with Django 1.6 and 1.7 and is not compatible
with any version supported by Patchwork.

18.6.5 Bug Fixes

• If a patch was processed by Patchwork before series support was added, it will not have a series associated
with it. As a result, it is not possible to extract the dependencies for that patch from the series. This was not
previously handled correctly. A 404 is now raised if this occurs.

• A nasty race condition bug that could cause patches in a series to be dropped has been fixed.

• The parsemail.sh and parsemail-batch.sh scripts, found in patchwork/bin, will now default
to using python rather than python2 for calling manage.py. This resolves an issue when Patchwork is
deployed with a virtualenv.

18.6. v2.1.0 189

https://docs.djangoproject.com/en/1.11/releases/1.11/
https://www.python.org/downloads/release/python-360/
https://github.com/getpatchwork/patchwork/issues

Patchwork, Release 2.2.6.alpha.0

18.6.6 API Changes

• Links to related comments are now exposed when checking patch and cover letter details. The comments
themselves are then available via /patches/{patchID}/comments and /covers/{coverID}/
comments endpoints. Please note that comments are available only since API version 1.1

• Cover letters embedded in other responses now provide an mbox link, which can be used to download the cover
letter and associated metadata (tags) in mbox format.

• Series, patches and cover letters can be filtered by submitter using email addresses. For example:

$ curl /covers/?submitter=stephen@that.guru

• Bundles can be filtered by owner, patches by delegate and checks by user using username. For example:

$ curl /bundles/?owner=stephenfin

• Filters can now be specified multiple times. For example:

$ curl /patches/?state=under-review&state=rfc

This operates as a logical OR: it will retrieve patches that are either Under Review or RFC.

• The /project endpoint now exposes a subject_match attribute.

• Messages headers that use the same key, such as Received: are now combined into a list. Previously only
one of the values would be output. This affects the /covers and /patches endpoints.

18.6.7 Other Notes

• The patch ID on the patch detail page can now be clicked to copy it. This is similar to what we already do on
the patch list page.

• mbox files now contain all headers from the original email. This also means the Subject: header included
will contain the original subject and not the parsed Patchwork’s version.

• Unify timezones used – use UTC for both email submissions and internal events. Please note that this change
doesn’t modify already existing data so in case the instance’s timezone is UTC+XX, events will appear out of
order (as if they happened earlier) for XX hours in the events API feed.

190 Chapter 18. v2.1 Series (“Eolienne”)

CHAPTER 19

v2.0 Series (“Dazzle”)

19.1 v2.0.4

19.1.1 Bug Fixes

• CVE-2019-13122 has been fixed. Andrew Donnellan discovered an XSS via the message-id field. A malicious
user could send a patch with a message ID that included a script tag. Because of the quirks of the email RFCs,
such a message ID can survive being sent through many mail systems, including Gmail, and be parsed and stored
by Patchwork. When a user viewed a patch detail page for the patch with this message id, the script would be
run. This is fixed by properly escaping the field before it is rendered.

19.2 v2.0.3

19.2.1 Bug Fixes

• If a patch was processed by Patchwork before series support was added, it will not have a series associated
with it. As a result, it is not possible to extract the dependencies for that patch from the series. This was not
previously handled correctly. A 404 is now raised if this occurs.

• The parsemail.sh and parsemail-batch.sh scripts, found in patchwork/bin, will now default
to using python rather than python2 for calling manage.py. This resolves an issue when Patchwork is
deployed with a virtualenv.

19.3 v2.0.2

19.3.1 Bug Fixes

• Resolve some issues caused by parallel parsing of series.

191

Patchwork, Release 2.2.6.alpha.0

• Poorly formatted email headers are now handled correctly.

• Patches with CRLF newlines are now parsed correctly and these line endings are stripped when saving patches.

• Resolved some issues with pagination.

• Emails from git-pull-request v2.14.3+ are now handled correctly.

• Token generation from the web UI is now disabled if the REST API is disabled. This was causing an exception.

• Non-breaking spaces in tags are now handled correctly.

• Patches with no space before the series marker, such as PATCH1/8, are now parsed correctly.

19.4 v2.0.1

19.4.1 Bug Fixes

• Handle requests for pages out of range.

• Fix SQL permissions scripts for tables and columns added in 2.0.

• Fix filtering of projects by name

• Fix “add to bundle” dropdown

• Performance improvements for the XML-RPC API

19.5 v2.0.0

19.5.1 Prelude

The v2.0.0 release includes many new features and bug fixes. For full information on the options avaiable, you should
look at the full release notes in detail. However, there are two key features that make v2.0.0 a worthwhile upgrade:

• A REST API is now provided, which will eventually replace the legacy XML-RPC API

• Patch series and series cover letters are now supported

For further information on these features and the other changes in this release, review the full release notes.

19.5.2 New Features

• REST API.

Previous versions of Patchwork provided an XML-RPC API. This was functional but there were a couple of
issues around usability and general design. This API also provided basic versioning information but the existing
clients, mostly pwclient variants, did not validate this version. Together, this left us with an API that needed
work but no way to fix it without breaking every client out there.

Rather than breaking all those users, make a clean break and provide another API method. REST APIs are the
API method de jour providing a number of advantages over XML-RPC APIs, thus, a REST API is chosen. The
following resources are exposed over this new API:

– Bundles

– Checks

192 Chapter 19. v2.0 Series (“Dazzle”)

Patchwork, Release 2.2.6.alpha.0

– Projects

– People

– Users

– Patches

– Series

– Cover letters

For information on the usage of the API, refer to the documentation.

• Cover letters are now supported.

Cover letters are often sent in addition to a series of patches. They do not contain a diff and can generally be
identified as number 0 of a series. For example:

[PATCH 0/3] A cover letter

Cover letters contain useful information that should not be discarded. Both cover letters and replies to these
mails are now stored for use with series.

• Series are now supported.

Series are groups of patches sent as one bundle. For example:

[PATCH 0/3] A cover letter
[PATCH 1/3] The first patch
[PATCH 2/3] The second patch
[PATCH 3/3] The third patch

While Patchwork already supports bundles, these must be created manually, defeating the purpose of using
series in the first place. Series make use of the information provided in the emails themselves, avoiding this
manual step. The series support implemented is basic and does not support versioning. This will be added in a
future release.

• All comments now have a permalink which can be used to reference individual replies to patches and cover
letters.

• Django Debug Toolbar is now enabled by defaut when using development settings.

• Django 1.9 and 1.10 are now supported.

• Python 3.5 is now supported.

• Docker support is now integrated for development usage. To use this, refer to the documentation.

• Series markers are now parsed from patches generated by the Mercurial Patchbomb extension.

19.5.3 Upgrade Notes

• The REST API is enabled by default.

The REST API is enabled by default. It is possible to disable this API, though this functionality may be removed
in a future release. Should you wish to disable this feature, configure the ENABLE_REST_API setting to
False.

• The parsemail.py and parsearchive.py scripts have been replaced by the parsemail and
parsearchive management commands. These can be called like any other management commands. For
example:

19.5. v2.0.0 193

https://patchwork.readthedocs.io/en/latest/api/rest/
https://pypi.python.org/pypi/django-debug-toolbar
https://docs.djangoproject.com/en/1.10/releases/1.9/
https://docs.djangoproject.com/en/1.10/releases/1.10/
https://www.python.org/downloads/release/python-350/
https://www.docker.com/what-docker#/developers
https://patchwork.readthedocs.io/en/latest/development/installation/
https://www.mercurial-scm.org/wiki/PatchbombExtension

Patchwork, Release 2.2.6.alpha.0

$./manage.py parsemail [args...]

• The DEFAULT_PATCHES_PER_PAGE has been renamed as DEFAULT_ITEMS_PER_PAGE as it is now pos-
sible to list cover letters in addition to patches.

• The context field for patch checks must now be slug, or a string consisting of only ASCII letters, numbers,
underscores or hyphens. While older, non-slugified strings won’t cause issues, any scripts creating contexts
must be updated where necessary.

19.5.4 Bug Fixes

• When downloading an mbox, a user’s name will now be set to the name used in the last email recieved from
them. Previously, the name used in the first email received from a user was used.

• user at domain-style email addresses, commonly found in Mailman archives, are now handled correctly.

• Unicode characters transmitted over the XML-RPC API are now handled correctly under Python 3

• The pwclient tool will no longer attempt to re-encode unicode to ascii bytes, which was a frequent cause of
UnicodeEncodeError exceptions. Instead, a warning is produced if your environement is not configured
for unicode.

19.5.5 Other Notes

• reno is now used for release note management.

• Patch diffs now download with a diff extension.

194 Chapter 19. v2.0 Series (“Dazzle”)

https://pypi.python.org/pypi/reno

CHAPTER 20

v1.1 Series (“Cashmere”)

20.1 1.1.3

This release fixes a number of issues with the 1.1.2 release.

20.1.1 Bug Fixes

• Some Python 3 issues are resolved in pwclient

• pwclient now functions as expected behind a proxy

20.2 1.1.2

This release fixed a number of issues with the 1.1.1 release.

20.2.1 Bug Fixes

• Headers containing invalid characters or codings are now parsed correctly

• Patches can no longer be delegated to any user

This had significant performance impacts and has been reverted.

20.3 1.1.1

This release fixed a number of issues with the 1.1.0 release.

195

Patchwork, Release 2.2.6.alpha.0

20.3.1 Bug Fixes

• Numerous issues in the parsemail.py, parsearchive.py and parsemail.sh scripts are resolved

• Permissions of database tables, as set by grant-all SQL scripts, are now set for tables added in Patchwork 1.1.0

• Some performance and usability regressions in the UI are resolved

20.4 1.1.0

This release focuses on usability and maintainability, and sets us up nicely for a v2.0.0 release in the near future.
Feature highlights of v1.1.0 include:

• Automated delegation of patches, based on the files modified in said patches.

• Storing of test results, a.k.a. “checks”, on a patch-by-patch basis.

• Delegation of patches to any registered Patchwork user (previously one had to be a registered maintainer).

• Overhaul of the web UI, which is now based on Bootstrap.

• Python 3 support.

20.4.1 New Features

• The web UI is updated to reflect modern web standards. Bootstrap 3.x is used.

• Python 3.4 is now supported

• Checks, which can be used to report the status of tests, have been added

• Automatic delegation of patches based on file path

• Automated documentation for the XML-RPC API. This can be found at the ‘/xmlrpc’ in most Patchwork de-
ployments

• Vagrant is now integrated for use during development

20.4.2 Upgrade Notes

• Patches can now be delegated to any Patchwork user.

196 Chapter 20. v1.1 Series (“Cashmere”)

CHAPTER 21

v1.0 Series (“Burlap”)

21.1 1.0.0

This release changes a few admin-visible components of Patchwork, so upgrading involves a few steps.

21.1.1 New Features

• Patch tags are now supported

Patch “tags”, such as Acked-by, Reviewed-by, are typically included in patches and replies. They provide impor-
tant information as to the activity and “mergability” of a patch. These tags are now extracted from patches and
included in the patch list.

• Django 1.7 and Django 1.8 are now supported

• tox support is integrated for use by developers

21.1.2 Upgrade Notes

• Migrations are now executed using the Django migrations framework.

Future database migrations will be implemented using Django Migrations, rather than raw SQL scripts. Be-
fore switching to Django migrations, first apply any unapplied migrations in the lib/sql/migration folder. For
example, on postgres:

$ psql -f lib/sql/migration/015-add-patch-tags.sql patchwork
$ psql -f lib/sql/grant-all.postgres.sql patchwork

Once applied, configure the required Django Migration tables using the migrate managment command:

$./manage.py migrate --fake-initial

197

Patchwork, Release 2.2.6.alpha.0

• Moved Patchwork source from the apps directory to the top level directory.

Any scripts or tools that call Patchwork applications, such as parsemail.sh, must be updated to reference the
new location of these scripts. To do this, simply remove apps/ from the path, i.e. apps/patchwork/ becomes
patchwork.

• The patchwork-cron.py script has been replaced by the cron management command.

Any references to the former should be updated to the latter. The cron management command can be called like
so:

$./manage.py cron

• The settings.py file has been updated to reflect modern Django practices.

You may need to manually migrate your existing configuration to the new settings file(s). By default, settings
are read from patchwork/settings/production.py. To migrate, use the provided template:

$ cp patchwork/settings/production{.example,}.py

Merge your previous settings, usually located in apps/local_settings.py, to this file.

In addition, any scripts that set the DJANGO_SETTINGS_MODULE environment variable will need to be up-
dated to reflect the new location, typically:

DJANGO_SETTINGS_MODULE=patchwork.settings.production

• Django staticfiles is now used to to gather static files for for serving via a web server

Static content should now be located in the folder indicated by STATIC_ROOT. This should point to somewhere
sensible, such as the absolute path of htdocs/static in the Patchwork tree. Configure the STATIC_ROOT setting
in your settings file, then run the collectstatic management command:

$./manage.py collectstatic

Finally, update your webserver configuration to serve the static content from this new location. Refer to the
sample web configuration files provided in lib for more information.

• Django 1.5 is no longer supported

• Python 2.5 support was broken and is officially no longer supported

21.1.3 Deprecation Notes

• Django 1.6 support will be removed in a future release

• Raw SQL migration scripts, currently found at lib/sql/migration, will no longer be updated and will be removed
in a future release. The Django Migration framework, found in Django 1.7 and above, should be used instead.

198 Chapter 21. v1.0 Series (“Burlap”)

CHAPTER 22

v0.9 Series (“Alpaca”)

This represents the state of the Patchwork code before adopting semantic versioning, along with fabric-inspired release
names. For information on the features available in this release, refer to the git logs.

199

http://semver.org/
https://en.wikipedia.org/wiki/List_of_fabrics
https://en.wikipedia.org/wiki/List_of_fabrics
https://github.com/getpatchwork/patchwork/commits/v0.9.0

Patchwork, Release 2.2.6.alpha.0

200 Chapter 22. v0.9 Series (“Alpaca”)

HTTP Routing Table

/api
GET /api/1.0/, 63
GET /api/1.0/bundles/, 63
GET /api/1.0/bundles/{id}/, 64
GET /api/1.0/covers/, 65
GET /api/1.0/covers/{id}/, 66
GET /api/1.0/covers/{id}/comments/, 67
GET /api/1.0/events/, 68
GET /api/1.0/patches/, 73
GET /api/1.0/patches/{id}/, 75
GET /api/1.0/patches/{id}/comments/, 81
GET /api/1.0/patches/{patch_id}/checks/,

82
GET /api/1.0/patches/{patch_id}/checks/{check_id}/,

84
GET /api/1.0/people/, 85
GET /api/1.0/people/{id}/, 86
GET /api/1.0/projects/, 87
GET /api/1.0/projects/{id}/, 87
GET /api/1.0/series/, 91
GET /api/1.0/series/{id}/, 92
GET /api/1.0/users/, 94
GET /api/1.0/users/{id}/, 94
GET /api/1.1/, 98
GET /api/1.1/bundles/, 98
GET /api/1.1/bundles/{id}/, 99
GET /api/1.1/covers/, 100
GET /api/1.1/covers/{id}/, 101
GET /api/1.1/covers/{id}/comments/, 103
GET /api/1.1/events/, 104
GET /api/1.1/patches/, 108
GET /api/1.1/patches/{id}/, 110
GET /api/1.1/patches/{id}/comments/, 116
GET /api/1.1/patches/{patch_id}/checks/,

117
GET /api/1.1/patches/{patch_id}/checks/{check_id}/,

120
GET /api/1.1/people/, 120
GET /api/1.1/people/{id}/, 121

GET /api/1.1/projects/, 122
GET /api/1.1/projects/{id}/, 123
GET /api/1.1/series/, 126
GET /api/1.1/series/{id}/, 128
GET /api/1.1/users/, 129
GET /api/1.1/users/{id}/, 130
GET /api/1.2/, 133
GET /api/1.2/bundles/, 134
GET /api/1.2/bundles/{id}/, 136
GET /api/1.2/covers/, 141
GET /api/1.2/covers/{id}/, 143
GET /api/1.2/covers/{id}/comments/, 144
GET /api/1.2/events/, 145
GET /api/1.2/patches/, 152
GET /api/1.2/patches/{id}/, 154
GET /api/1.2/patches/{id}/comments/, 161
GET /api/1.2/patches/{patch_id}/checks/,

162
GET /api/1.2/patches/{patch_id}/checks/{check_id}/,

164
GET /api/1.2/people/, 165
GET /api/1.2/people/{id}/, 166
GET /api/1.2/projects/, 167
GET /api/1.2/projects/{id}/, 168
GET /api/1.2/series/, 172
GET /api/1.2/series/{id}/, 173
GET /api/1.2/users/, 175
GET /api/1.2/users/{id}/, 175
POST /api/1.0/patches/{patch_id}/checks/,

83
POST /api/1.1/patches/{patch_id}/checks/,

118
POST /api/1.2/bundles/, 135
POST /api/1.2/patches/{patch_id}/checks/,

163
PUT /api/1.0/patches/{id}/, 78
PUT /api/1.0/projects/{id}/, 90
PUT /api/1.0/users/{id}/, 96
PUT /api/1.1/patches/{id}/, 114
PUT /api/1.1/projects/{id}/, 125

201

Patchwork, Release 2.2.6.alpha.0

PUT /api/1.1/users/{id}/, 132
PUT /api/1.2/bundles/{id}/, 139
PUT /api/1.2/patches/{id}/, 158
PUT /api/1.2/projects/{id}/, 170
PUT /api/1.2/users/{id}/, 178
PATCH /api/1.0/patches/{id}/, 76
PATCH /api/1.0/projects/{id}/, 88
PATCH /api/1.0/users/{id}/, 95
PATCH /api/1.1/patches/{id}/, 112
PATCH /api/1.1/projects/{id}/, 124
PATCH /api/1.1/users/{id}/, 131
PATCH /api/1.2/bundles/{id}/, 138
PATCH /api/1.2/patches/{id}/, 156
PATCH /api/1.2/projects/{id}/, 169
PATCH /api/1.2/users/{id}/, 176

202 HTTP Routing Table

Index

Symbols
-list-id <list-id>

manage.py-parseachive command line
option, 32

manage.py-parsemail command line
option, 32

-c, -compress
manage.py-dumparchive command line

option, 32

I
infile

manage.py-parseachive command line
option, 32

manage.py-parsemail command line
option, 32

M
manage.py-dumparchive command line

option
-c, -compress, 32
PROJECT, 32

manage.py-parseachive command line
option

-list-id <list-id>, 32
infile, 32

manage.py-parsemail command line
option

-list-id <list-id>, 32
infile, 32

manage.py-rehash command line option
patch_id, 32

manage.py-retag command line option
patch_id, 33

P
patch_id

manage.py-rehash command line
option, 32

manage.py-retag command line
option, 33

PROJECT
manage.py-dumparchive command line

option, 32

203

	Overview
	Projects
	People
	Users
	Submissions
	Comments
	Patch Metadata
	Collections
	Events

	Design
	Autodelegation
	Hint Headers
	Clients
	pwclient
	git-pw
	snowpatch

	Installation
	Deployment Guides, Provisioning Tools and Platform-as-a-Service
	Requirements
	Database
	Patchwork
	Reverse Proxy and WSGI HTTP Servers
	Django administrative console
	Incoming Email
	(Optional) Configure your VCS to Automatically Update Patches
	(Optional) Configure the Patchwork Cron Job

	Configuration
	The settings.py File
	Patchwork-specific Settings

	Management
	The manage.py Script
	Available Commands

	Upgrading
	Before You Start
	Identify Changed Scripts, Requirements, etc.
	Understand What Requirements Have Changed
	Collect Static Files
	Upgrade Your Database

	Contributing
	Coding Standards
	Testing
	Release Notes
	API
	Reporting Issues
	Submitting Changes
	Mailing Lists

	Installation
	Docker-Based Installation
	Manual Installation
	Import Mailing List Archives
	Django Debug Toolbar
	Django Database Backup
	Environment Variables

	Release Process
	Versioning
	Release Cycle
	Supported Versions
	Release Checklist
	Backporting

	Using the APIs
	Static Assets
	css
	fonts
	js

	The REST API
	Getting Started
	Versioning
	Schema
	Parameters
	Authentication
	Pagination
	Supported Versions
	Schemas

	The XML-RPC API
	Getting Started
	Further Information

	Unreleased
	v2.2.4
	v2.2.3
	v2.2.2
	v2.2.1
	v2.2.0
	v2.1.0

	v2.1 Series (“Eolienne”)
	v2.1.6
	v2.1.4
	v2.1.3
	v2.1.2
	v2.1.1
	v2.1.0

	v2.0 Series (“Dazzle”)
	v2.0.4
	v2.0.3
	v2.0.2
	v2.0.1
	v2.0.0

	v1.1 Series (“Cashmere”)
	1.1.3
	1.1.2
	1.1.1
	1.1.0

	v1.0 Series (“Burlap”)
	1.0.0

	v0.9 Series (“Alpaca”)
	HTTP Routing Table
	Index

